Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #181 Jul 08 2024 10:37:35
%S 0,3,12,30,60,105,168,252,360,495,660,858,1092,1365,1680,2040,2448,
%T 2907,3420,3990,4620,5313,6072,6900,7800,8775,9828,10962,12180,13485,
%U 14880,16368,17952,19635,21420,23310,25308,27417,29640,31980,34440
%N a(n) = n*(n+1)*(n+2)/2.
%C Write the integers in groups: 0; 1,2; 3,4,5; 6,7,8,9; ... and add the groups: a(n) = Sum_{j=0..n} (A000217(n)+j), row sums of the triangular view of A001477. - _Asher Auel_, Jan 06 2000
%C With offset = 2, a(n) is the number of edges of the line graph of the complete graph of order n, L(K_n). - _Roberto E. Martinez II_, Jan 07 2002
%C Also the total number of pips on a set of dominoes of type n. (A "3" domino set would have 0-0, 0-1, 0-2, 0-3, 1-1, 1-2, 1-3, 2-2, 2-3, 3-3.) - _Gerard Schildberger_, Jun 26 2003. See A129533 for generalization to n-armed "dominoes". - _N. J. A. Sloane_, Jan 06 2016
%C Common sum in an (n+1) X (n+1) magic square with entries (0..n^2-1).
%C Alternate terms of A057587. - _Jeremy Gardiner_, Apr 10 2005
%C If Y is a 3-subset of an n-set X then, for n >= 5, a(n-5) is the number of 4-subsets of X which have exactly one element in common with Y. Also, if Y is a 3-subset of an n-set X then, for n >= 5, a(n-5) is the number of (n-5)-subsets of X which have exactly one element in common with Y. - _Milan Janjic_, Dec 28 2007
%C These numbers, starting with 3, are the denominators of the power series f(x) = (1-x)^2 * log(1/(1-x)), if the numerators are kept at 1. This sequence of denominators starts at the term x^3/3. - _Miklos Bona_, Feb 18 2009
%C a(n) is the number of triples (w,x,y) having all terms in {0..n} and satisfying at least one of the inequalities x+y < w, y+w < x, w+x < y. - _Clark Kimberling_, Jun 14 2012
%C From _Martin Licht_, Dec 04 2016: (Start)
%C Let b(n) = (n+1)(n+2)(n+3)/2 (the same sequence, but with a different offset). Then (see Arnold et al., 2006):
%C b(n) is the dimension of the Nédélec space of the second kind of polynomials of order n over a tetrahedron.
%C b(n-1) is the dimension of the curl-conforming Nédélec space of the first kind of polynomials of order n with tangential boundary conditions over a tetrahedron.
%C b(n) is the dimension of the divergence-conforming Nédélec space of the first kind of polynomials of order n with normal boundary conditions over a tetrahedron. (End)
%C After a(0), the digital root has period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9]. - _Peter M. Chema_, Jan 19 2017
%H T. D. Noe, <a href="/A027480/b027480.txt">Table of n, a(n) for n = 0..1000</a>
%H Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, <a href="http://www-users.math.umn.edu/~arnold/papers/acta.pdf">Finite element exterior calculus, homological techniques, and applications</a>, Acta Numerica 15 (2006), 1-155.
%H Steve Butler and Pavel Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq. 13 (2010), 10.4.4.
%H Sela Fried, <a href="https://arxiv.org/abs/2406.18923">Counting r X s rectangles in nondecreasing and Smirnov words</a>, arXiv:2406.18923 [math.CO], 2024. See p. 9.
%H Solomon Gartenhaus, <a href="https://arxiv.org/abs/math/0210275">Odd Order Pandiagonal Latin and Magic Cubes in Three and Four Dimensions</a>, arXiv:math/0210275 [math.CO], 2002.
%H <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = a(n-1) + A050534(n) = 3*A000292(n-1) = A050534(n) - A050534(n-1).
%F a(n) = n*binomial(2+n, 2). - _Zerinvary Lajos_, Jan 10 2006
%F a(n) = A007531(n+2)/2. - _Zerinvary Lajos_, Jul 17 2006
%F Starting with offset 1 = binomial transform of [3, 9, 9, 3, 0, 0, 0]. - _Gary W. Adamson_, Oct 25 2007
%F From _R. J. Mathar_, Apr 07 2009: (Start)
%F G.f.: 3*x/(x-1)^4.
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
%F a(n) = Sum_{i=0..n} n*(n - i) + 2*i. - _Bruno Berselli_, Jan 13 2016
%F From _Ilya Gutkovskiy_, Aug 07 2016: (Start)
%F E.g.f.: x*(6 + 6*x + x^2)*exp(x)/2.
%F a(n) = Sum_{k=0..n} A045943(k).
%F Sum_{n>=1} 1/a(n) = 1/2.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = (8*log(2) - 5)/2 = 0.2725887222397812... = A016639/10. (End)
%F a(n-1) = binomial(n^2,2)/n for n > 0. - _Jonathan Sondow_, Jan 07 2018
%F For k > 1, Sum_{i=0..n^2-1} (k+i)^2 = (k*n + a(k-1))^2 + A126275(k). - _Charlie Marion_, Apr 23 2021
%e Row sums of n consecutive integers, starting at 0, seen as a triangle:
%e .
%e 0 | 0
%e 3 | 1 2
%e 12 | 3 4 5
%e 30 | 6 7 8 9
%e 60 | 10 11 12 13 14
%e 105 | 15 16 17 18 19 20
%p [seq(3*binomial(n+2,3),n=0..37)]; # _Zerinvary Lajos_, Nov 24 2006
%p a := n -> add((j+n)*(n+2)/3,j=0..n): seq(a(n),n=0..35); # _Zerinvary Lajos_, Dec 17 2006
%t Table[(m^3 - m)/2, {m, 36}] (* _Zerinvary Lajos_, Mar 21 2007 *)
%t LinearRecurrence[{4,-6,4,-1},{0,3,12,30},40] (* _Harvey P. Dale_, Oct 10 2012 *)
%t CoefficientList[Series[3 x / (x - 1)^4, {x, 0, 40}], x] (* _Vincenzo Librandi_, Nov 14 2014 *)
%t With[{nn=50},Total/@TakeList[Range[0,(nn(nn+1))/2-1],Range[nn]]] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Jun 02 2019 *)
%o (PARI) a(n)=3*binomial(n+2,3) \\ _Charles R Greathouse IV_, May 23 2011
%o (Magma) [n*(n+1)*(n+2)/2: n in [0..40]]; // _Vincenzo Librandi_, Nov 14 2014
%o (Python) def a(n): return (n**3+3*n**2+2*n)//2 # __Torlach Rush_, Jun 16 2024
%Y 1/beta(n, 3) in A061928.
%Y Cf. A057587, A006003, A254407.
%Y A row of array in A129533.
%Y Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in A267370.
%Y Similar sequences are listed in A316224.
%Y Cf. A056923, A281258.
%Y Third column of A003506.
%Y Cf. A000217, A002378, A006002.
%K nonn,nice,easy
%O 0,2
%A _Olivier Gérard_ and Ken Knowlton (kcknowlton(AT)aol.com)