



1, 4, 16, 56, 196, 680, 2348, 8096, 27892, 96056, 330748, 1138768, 3920644, 13498088, 46471180, 159990272, 550811156, 1896319640, 6528602140, 22476505520, 77381536036, 266407155784, 917179667500, 3157642420064, 10871049557044, 37426567849976, 128851218332732, 443605636686608, 1527233994485572
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A MetaAlgorithm for Creating Fast Algorithms for Counting ON Cells in OddRule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, OddRule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
Index entries for sequences related to cellular automata
Index entries for linear recurrences with constant coefficients, signature (4,1,2,4).


FORMULA

G.f.: (1x)*(1+x+2*x^2) / (14*x+x^2+2*x^3+4*x^4).
a(n) = 4*a(n1)  a(n2)  2*a(n3)  4*a(n4) for n>3.  Colin Barker, Feb 04 2017


MATHEMATICA

LinearRecurrence[{4, 1, 2, 4}, {1, 4, 16, 56}, 30] (* JeanFrançois Alcover, Oct 10 2018 *)


PROG

(PARI) Vec((1x)*(1+x+2*x^2) / (14*x+x^2+2*x^3+4*x^4) + O(x^30)) \\ Colin Barker, Feb 04 2017


CROSSREFS

Cf. A255300.
Sequence in context: A026155 A025182 A057585 * A097128 A006079 A218263
Adjacent sequences: A255298 A255299 A255300 * A255302 A255303 A255304


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane and Doron Zeilberger, Feb 23 2015


STATUS

approved



