The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316441 a(n) = Sum (-1)^k where the sum is over all factorizations of n into factors > 1 and k is the number of factors. 21
 1, -1, -1, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 0, -1, 0, 0, 0, -1, 1, 0, 0, -1, 0, -1, 1, -1, -1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, -1, 1, -1, 0, 0, 1, 0, 1, -1, 0, 0, 1, -1, 0, -1, 0, 0, 0, 0, 1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,256 COMMENTS First term greater than 1 in absolute value is a(256) = 2. LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA Dirichlet g.f.: Product_{n > 1} 1/(1 + 1/n^s). EXAMPLE The factorizations of 24 are (2*2*2*3), (2*2*6), (2*3*4), (2*12), (3*8), (4*6), (24); so a(24) = 1 - 2 + 3 - 1 = 1. MATHEMATICA facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]]; Table[Sum[(-1)^Length[f], {f, facs[n]}], {n, 200}] PROG (PARI) A316441(n, m=n, k=0) = if(1==n, (-1)^k, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A316441(n/d, d, k+1))); (s)); \\ Antti Karttunen, Sep 08 2018, after Michael B. Porter's code for A001055 CROSSREFS Cf. A001222, A001055, A045778, A114592, A162247, A190938, A259936, A281116, A303386. Sequence in context: A266591 A132194 A174897 * A190938 A342653 A189166 Adjacent sequences:  A316438 A316439 A316440 * A316442 A316443 A316444 KEYWORD sign AUTHOR Gus Wiseman, Jul 03 2018 EXTENSIONS Secondary offset added by Antti Karttunen, Sep 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 19:54 EDT 2021. Contains 346441 sequences. (Running on oeis4.)