login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174897
a(n) = characteristic function of numbers k such that A007955(m) = k has solution for some m, where A007955(m) = product of divisors of m.
4
1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
a(n) = characteristic function of numbers from A174895(n).
a(n) = 1 if A007955(m) = n for any m, else 0.
FORMULA
a(n) = 1 - A174898(n).
MATHEMATICA
Block[{nn = 105, t}, t = ConstantArray[0, nn]; ReplacePart[t, Map[# -> 1 &, TakeWhile[Sort@ Array[Times @@ Divisors@ # &, nn], # <= 105 &]]]] (* Michael De Vlieger, Oct 20 2017 *)
PROG
(PARI)
up_to = 65537;
v174897 = vector(up_to);
A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ This function from Charles R Greathouse IV, Feb 11 2011
for(k=1, up_to, t=A007955(k); if(t<=up_to, v174897[t] = 1));
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
write_to_bfile(1, v174897, "b174897_upto65537.txt");
\\ Antti Karttunen, Oct 20 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 01 2010
EXTENSIONS
Name edited and more terms added by Antti Karttunen, Oct 20 2017
STATUS
approved