login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053132
One half of binomial coefficients C(2*n-4,5).
6
3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252, 32890, 49140, 71253, 100688, 139128, 188496, 250971, 329004, 425334, 543004, 685377, 856152, 1059380, 1299480, 1581255, 1909908, 2291058, 2730756, 3235501, 3812256, 4468464
OFFSET
5,1
FORMULA
a(n) = binomial(2*n-4, 5)/2 if n >= 5 else 0.
G.f.: (x^5)*(3+10*x+3*x^2)/(1-x)^6.
a(n) = A053127(n)/2
a(n) = Sum_{k=1..n-4} (A000217(k)*A000217(2*n-k-7)). - Reinhard Zumkeller, Mar 03 2015
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=5} 1/a(n) = 335/6 - 80*log(2).
Sum_{n>=5} (-1)^(n+1)/a(n) = 85/6 - 20*log(2). (End)
MATHEMATICA
Binomial[2*Range[5, 40]-4, 5]/2 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 28, 126, 396, 1001, 2184}, 40] (* Harvey P. Dale, Oct 25 2015 *)
PROG
(Magma) [Binomial(2*n-4, 5)/2: n in [5..40]]; // Vincenzo Librandi, Oct 07 2011
(Haskell)
a053132 n = a053132_list !! (n-5)
a053132_list = f [1] $ drop 2 a000217_list where
f xs ts'@(t:ts) = (sum $ zipWith (*) xs ts') : f (t:xs) ts
-- Reinhard Zumkeller, Mar 03 2015
(PARI) for(n=5, 50, print1(binomial(2*n-4, 5)/2, ", ")) \\ G. C. Greubel, Aug 26 2018
CROSSREFS
Sequence in context: A239057 A338791 A100019 * A316390 A048367 A095665
KEYWORD
nonn,easy
STATUS
approved