login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053132 One half of binomial coefficients C(2*n-4,5). 6
3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252, 32890, 49140, 71253, 100688, 139128, 188496, 250971, 329004, 425334, 543004, 685377, 856152, 1059380, 1299480, 1581255, 1909908, 2291058, 2730756, 3235501, 3812256, 4468464 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,1
LINKS
FORMULA
a(n) = binomial(2*n-4, 5)/2 if n >= 5 else 0.
G.f.: (x^5)*(3+10*x+3*x^2)/(1-x)^6.
a(n) = A053127(n)/2
a(n) = Sum_{k=1..n-4} (A000217(k)*A000217(2*n-k-7)). - Reinhard Zumkeller, Mar 03 2015
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=5} 1/a(n) = 335/6 - 80*log(2).
Sum_{n>=5} (-1)^(n+1)/a(n) = 85/6 - 20*log(2). (End)
MATHEMATICA
Binomial[2*Range[5, 40]-4, 5]/2 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 28, 126, 396, 1001, 2184}, 40] (* Harvey P. Dale, Oct 25 2015 *)
PROG
(Magma) [Binomial(2*n-4, 5)/2: n in [5..40]]; // Vincenzo Librandi, Oct 07 2011
(Haskell)
a053132 n = a053132_list !! (n-5)
a053132_list = f [1] $ drop 2 a000217_list where
f xs ts'@(t:ts) = (sum $ zipWith (*) xs ts') : f (t:xs) ts
-- Reinhard Zumkeller, Mar 03 2015
(PARI) for(n=5, 50, print1(binomial(2*n-4, 5)/2, ", ")) \\ G. C. Greubel, Aug 26 2018
CROSSREFS
Sequence in context: A239057 A338791 A100019 * A316390 A048367 A095665
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 07:10 EST 2023. Contains 367510 sequences. (Running on oeis4.)