Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:45:00
%S 3,28,126,396,1001,2184,4284,7752,13167,21252,32890,49140,71253,
%T 100688,139128,188496,250971,329004,425334,543004,685377,856152,
%U 1059380,1299480,1581255,1909908,2291058,2730756,3235501,3812256,4468464
%N One half of binomial coefficients C(2*n-4,5).
%H Vincenzo Librandi, <a href="/A053132/b053132.txt">Table of n, a(n) for n = 5..200</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = binomial(2*n-4, 5)/2 if n >= 5 else 0.
%F G.f.: (x^5)*(3+10*x+3*x^2)/(1-x)^6.
%F a(n) = A053127(n)/2
%F a(n) = Sum_{k=1..n-4} (A000217(k)*A000217(2*n-k-7)). - _Reinhard Zumkeller_, Mar 03 2015
%F From _Amiram Eldar_, Jan 10 2022: (Start)
%F Sum_{n>=5} 1/a(n) = 335/6 - 80*log(2).
%F Sum_{n>=5} (-1)^(n+1)/a(n) = 85/6 - 20*log(2). (End)
%t Binomial[2*Range[5,40]-4,5]/2 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3,28,126,396,1001,2184},40] (* _Harvey P. Dale_, Oct 25 2015 *)
%o (Magma) [Binomial(2*n-4,5)/2: n in [5..40]]; // _Vincenzo Librandi_, Oct 07 2011
%o (Haskell)
%o a053132 n = a053132_list !! (n-5)
%o a053132_list = f [1] $ drop 2 a000217_list where
%o f xs ts'@(t:ts) = (sum $ zipWith (*) xs ts') : f (t:xs) ts
%o -- _Reinhard Zumkeller_, Mar 03 2015
%o (PARI) for(n=5,50, print1(binomial(2*n-4,5)/2, ", ")) \\ _G. C. Greubel_, Aug 26 2018
%Y Cf. A000217, A053127.
%K nonn,easy
%O 5,1
%A _Wolfdieter Lang_