Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Oct 21 2022 09:45:07
%S 10,220,2002,11440,48620,167960,497420,1307504,3124550,6906900,
%T 14307150,28048800,52451256,94143280,163011640,273438880,445891810,
%U 708930508,1101716330,1677106640,2505433700,3679075400,5317936260,7575968400,10648873950,14783142660
%N Binomial coefficients C(2*n-8,9).
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
%H Vincenzo Librandi, <a href="/A053131/b053131.txt">Table of n, a(n) for n = 9..200</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H Milan Janjić, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45, 10,-1).
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.
%F a(n) = binomial(2*n-8, 9) if n >= 9 else 0.
%F G.f.: (10+120*x+252*x^2+120*x^3+10*x^4)/(1-x)^10.
%F a(n) = 2*A053133(n).
%F a(n) = -A053123(n,9), n >= 9; a(n) := 0, n=0..8 (tenth column of shifted Chebyshev's S-triangle, decreasing order).
%F From _Amiram Eldar_, Oct 21 2022: (Start)
%F Sum_{n>=9} 1/a(n) = 223611/280 - 1152*log(2).
%F Sum_{n>=9} (-1)^(n+1)/a(n) = 72*log(2) - 13947/280. (End)
%t Binomial[2*Range[9,40]-8,9] (* _Harvey P. Dale_, Mar 19 2012 *)
%o (Magma)[Binomial(2*n-8,9): n in [9..40]]; // _Vincenzo Librandi_, Oct 07 2011
%o (PARI) for(n=9,50, print1(binomial(2*n-8,9), ", ")) \\ _G. C. Greubel_, Aug 26 2018
%Y Cf. A053123, A053130, A053133.
%K nonn,easy
%O 9,1
%A _Wolfdieter Lang_