login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000438 Number of 1-factorizations of complete graph K_{2n}. 9
1, 1, 6, 6240, 1225566720, 252282619805368320, 98758655816833727741338583040 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
REFERENCES
CRC Handbook of Combinatorial Designs (see pages 655, 720-723).
N. T. Gridgeman, Latin Squares Under Restriction and a Jumboization, J. Rec. Math., 5 (1972), 198-202.
W. D. Wallis, 1-Factorizations of complete graphs, pp. 593-631 in Jeffrey H. Dinitz and D. R. Stinson, Contemporary Design Theory, Wiley, 1992.
LINKS
Jeffrey H. Dinitz, David K. Garnick, and Brendan D. McKay, There are 526,915,620 nonisomorphic one-factorizations of K_{12}, J. Combin. Des. 2 (1994), no. 4, 273-285.
Alan Hartman, and Alexander Rosa, Cyclic one-factorization of the complete graph, European J. Combin. 6 (1985), no. 1, 45-48.
Dieter Jungnickel, and Vladimir D. Tonchev, Counting Steiner triple systems with classical parameters and prescribed rank, arXiv:1709.06044 [math.CO], 2017.
Petteri Kaski, and Patric R. J. Östergård, There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K14, Journal of Combinatorial Designs 17 (2009) 147-159.
Mario Krenn, Xuemei Gu, and Anton Zeilinger, Quantum Experiments and Graphs: Multiparty States as coherent superpositions of Perfect Matchings, arXiv:1705.06646 [quant-ph], 2017 and Phys. Rev. Lett. 119, 240403, 2017. [Mario Krenn said in an email, "We would not have discovered this connection between quantum mechanical experiments and graph theory, thus the physical interpretations and all the generalisations we are developing right now, without you and A000438."]
D. V. Zinoviev, On the number of 1-factorizations of a complete graph [in Russian], Problemy Peredachi Informatsii, 50 (No. 4), 2014, 71-78.
CROSSREFS
Cf. A000474, A003191, A035481, A035483. Equals A036981 / (2n+1)!.
Sequence in context: A202969 A003191 A298272 * A061109 A321983 A219014
KEYWORD
nonn,hard,more,nice
AUTHOR
EXTENSIONS
For K_16 the answer is approximately 1.48 * 10^44 and for K_18 1.52 * 10^63. - Dinitz et al.
a(7) found by Patric Östergård and Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 19 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 07:52 EDT 2024. Contains 374575 sequences. (Running on oeis4.)