login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035481 Number of n X n symmetric matrices whose first row is 1..n and whose rows and columns are all permutations of 1..n. 10
1, 1, 1, 1, 4, 6, 456, 6240, 10936320, 1225566720, 130025295912960, 252282619805368320, 2209617218725251404267520, 98758655816833727741338583040 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The odd subsequence is A000438. The even subsequence is A035483.

LINKS

Table of n, a(n) for n=0..13.

Brendan D. McKay and Ian M. Wanless, Enumeration of Latin squares with conjugate symmetry, J. Combin. Des. 30 (2022), 105-130, also on Enumeration of Latin squares with conjugate symmetry, arXiv:2104.07902 [math.CO], 2021. Table 2 p. 7.

EXAMPLE

a(3) = 1 because after 123 in the first row and column, 213 is not allowed for the second row, so it must be 231 and thus the third row is 312.

MATHEMATICA

(* This script is not suitable for n > 6 *) matrices[n_ /; n > 1] := Module[{a, t, vars}, t = Table[Which[i==1, j, j==1, i, j>i, a[i, j], True, a[j, i]], {i, n}, {j, n}]; vars = Select[Flatten[t], !IntegerQ[#]& ] // Union; t /. {Reduce[And @@ (1 <= # <= n & /@ vars) && And @@ Unequal @@@ t, vars, Integers] // ToRules}]; a[0] = a[1] = 1; a[n_] := Length[ matrices[n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 6}] (* Jean-Fran├žois Alcover, Jan 04 2016 *)

CROSSREFS

Cf. A000438, A035482, A000315, A002860, A003090, A040082.

Sequence in context: A113838 A056831 A027717 * A323214 A061214 A137024

Adjacent sequences:  A035478 A035479 A035480 * A035482 A035483 A035484

KEYWORD

nonn,more,nice

AUTHOR

Joshua Zucker and Joe Keane

EXTENSIONS

a(10)-a(13) from Ian Wanless, Oct 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 10:18 EST 2022. Contains 350471 sequences. (Running on oeis4.)