login
A035481
Number of n X n symmetric matrices whose first row is 1..n and whose rows and columns are all permutations of 1..n.
10
1, 1, 1, 1, 4, 6, 456, 6240, 10936320, 1225566720, 130025295912960, 252282619805368320, 2209617218725251404267520, 98758655816833727741338583040
OFFSET
0,5
COMMENTS
The odd subsequence is A000438. The even subsequence is A035483.
LINKS
Brendan D. McKay and Ian M. Wanless, Enumeration of Latin squares with conjugate symmetry, J. Combin. Des. 30 (2022), 105-130, also on Enumeration of Latin squares with conjugate symmetry, arXiv:2104.07902 [math.CO], 2021. Table 2 p. 7.
EXAMPLE
a(3) = 1 because after 123 in the first row and column, 213 is not allowed for the second row, so it must be 231 and thus the third row is 312.
MATHEMATICA
(* This script is not suitable for n > 6 *) matrices[n_ /; n > 1] := Module[{a, t, vars}, t = Table[Which[i==1, j, j==1, i, j>i, a[i, j], True, a[j, i]], {i, n}, {j, n}]; vars = Select[Flatten[t], !IntegerQ[#]& ] // Union; t /. {Reduce[And @@ (1 <= # <= n & /@ vars) && And @@ Unequal @@@ t, vars, Integers] // ToRules}]; a[0] = a[1] = 1; a[n_] := Length[ matrices[n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 6}] (* Jean-François Alcover, Jan 04 2016 *)
CROSSREFS
KEYWORD
nonn,more,nice
AUTHOR
Joshua Zucker and Joe Keane
EXTENSIONS
a(10)-a(13) from Ian Wanless, Oct 20 2019
STATUS
approved