|
|
A035479
|
|
(-1)sigma sequence: a(n)=(-1)sigma(a(n-1)), where if x=Product p(i)^r(i), then (-1)sigma(x)=Product(-1+(Sum p(i)^s(i), s(i)=1 to r(i))).
|
|
0
|
|
|
624, 696, 728, 936, 1716, 1200, 1682, 869, 780, 480, 488, 780, 480, 488, 780, 480, 488, 780, 480, 488
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
This sequence becomes a cycle of period 3: 780, 480, 488. It is called (-1)sigma sociable of order 3.
|
|
LINKS
|
Table of n, a(n) for n=0..19.
|
|
EXAMPLE
|
Factorizations: 2^4*3*13,2^3*3*29,2^3*7*13,2^3*3^2*13,2^2*3*11*13, 2^4*3*5^2,2*29^2,11*79,2^2*3*5*13,2^5*3*5,2^3*61
|
|
CROSSREFS
|
Sequence in context: A283898 A345546 A345799 * A180453 A216843 A043368
Adjacent sequences: A035476 A035477 A035478 * A035480 A035481 A035482
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Yasutoshi Kohmoto
|
|
STATUS
|
approved
|
|
|
|