login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219014
Numerators in a product expansion for sqrt(2).
3
6, 6726, 13765255184676885126
OFFSET
0,1
COMMENTS
a(3) has 96 digits and a(4) has 479 digits.
Iterating the algebraic identity sqrt(1 + 4/x) = (1 + 2*(x + 2)/(x^2 + 3*x + 1)) * sqrt(1 + 4/(x*(x^2 + 5*x + 5)^2)) produces a rapidly converging product expansion sqrt(1 + 4/x) = product {n = 0..inf} (1 + 2*a(n)/b(n)), where a(n) and b(n) are integer sequences when x is a positive integer.
The present case is when x = 4. The denominators b(n) are in A219015. See also A219010 (x = 1) and A219012 (x = 2).
FORMULA
Let tau = 3 + 2*sqrt(2). Then a(n) = tau^(5^n) + 1/tau^(5^n).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 6.
EXAMPLE
The first two terms of the product give 18 correct decimal places of sqrt(2): (1 + 2*6/29)*(1 + 2*6726/45232349) = 1.41421 35623 73095 048(5...).
CROSSREFS
KEYWORD
nonn,easy,bref
AUTHOR
Peter Bala, Nov 09 2012
STATUS
approved