login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partially labeled rooted trees with n nodes (3 of which are labeled).
(Formerly M4641 N1984)
3

%I M4641 N1984 #40 Mar 24 2023 09:04:33

%S 9,64,326,1433,5799,22224,81987,293987,1031298,3555085,12081775,

%T 40576240,134919788,444805274,1455645411,4733022100,15302145060,

%U 49223709597,157629612076,502736717207,1597541346522,5059625685739,15975936032821,50304490599602

%N Number of partially labeled rooted trees with n nodes (3 of which are labeled).

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A000444/b000444.txt">Table of n, a(n) for n = 3..650</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F G.f.: A(x) = B(x)^3*(9-8*B(x)+2*B(x)^2)/(1-B(x))^5, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.

%F a(n) ~ c * d^n * n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.244665117500618173509... . - _Vaclav Kotesovec_, Sep 11 2014

%p b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-2)^3*(9-8*B(n-2)+2*B(n-2)^2)/(1-B(n-2))^5, x=0, n+1), x,n): seq(a(n), n=3..24); # _Alois P. Heinz_, Aug 21 2008

%t b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum [b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[Series[B[n-2]^3*(9 - 8*B[n-2] + 2*B[n-2]^2)/(1 - B[n-2])^5, {x, 0, n+1}], x, n]; Table[a[n], {n, 3, 30}] (* _Jean-François Alcover_, Mar 10 2014, after _Alois P. Heinz_ *)

%Y Column k=3 of A008295.

%Y Cf. A042977.

%K nonn

%O 3,1

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Oct 19 2001