login
A091514
Primes of the form (2^n + 1)^2 - 2 = 4^n + 2^(n+1) - 1.
10
2, 7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207, 5070602400912922109586440191999
OFFSET
1,1
COMMENTS
Cletus Emmanuel calls these "Kynea primes".
LINKS
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
a(n) = (2^A091513(n) + 1)^2 - 2.
MAPLE
select(isprime, [seq((2^n+1)^2-2, n=0..1000)]); # Robert Israel, Feb 10 2016
MATHEMATICA
lst={}; Do[If[PrimeQ[p=4^n+2^(n+1)-1], (*Print[p]; *)AppendTo[lst, p]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
Select[Table[(2^n + 1)^2 - 2, {n, 0, 50}], PrimeQ] (* Eric W. Weisstein, Feb 10 2016 *)
PROG
(Magma) [a: n in [0..60] | IsPrime(a) where a is 4^n+2^(n+1)-1]; // Vincenzo Librandi, Dec 13 2011
(PARI) select(isprime, vector(100, n, (2^n+1)^2-2)) \\ Charles R Greathouse IV, Feb 19 2016
CROSSREFS
Cf. A093069 (numbers of the form (2^n + 1)^2 - 2).
Cf. A091513 (indices n such that (2^n + 1)^2 - 2 is prime).
Sequence in context: A112657 A007717 A130567 * A143629 A176287 A119371
KEYWORD
nonn,changed
AUTHOR
Eric W. Weisstein, Jan 17 2004
EXTENSIONS
Edited by Ray Chandler, Nov 15 2004
First term (2) added by Vincenzo Librandi, Dec 13 2011
STATUS
approved