login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091516
Primes of the form 4^n - 2^(n+1) - 1.
9
7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087
OFFSET
1,1
COMMENTS
Cletus Emmanuel calls these "Carol primes".
There are only 25 such primes below 4^1000. Terms beyond a(15) are too large to be displayed here: The sequence should be extended by listing the corresponding n-values in A091515. - M. F. Hasler, May 15 2008
Is there an explanation for the following observed pattern? Between groups of primes of roughly the same size, there is a gap of about the magnitude of these primes, i.e., the size roughly doubles (e.g., after the 16- and 17-digit primes, there is a 34-digit prime, then a 78-digit prime and some others up to 105 digits, then some 200- to 250-digit primes, then approximately 500 digits...). - M. F. Hasler, May 15 2008
LINKS
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
a(k) = 4^A091515(k) - 2^(A091515(k) + 1) - 1 = (2^A091515(k) - 1)^2 - 2. - M. F. Hasler, May 15 2008
MATHEMATICA
lst={}; Do[p=(2^n-1)^2-2; If[PrimeQ[p], AppendTo[lst, p]], {n, 2, 160}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
PROG
(PARI) c=0; for(n=1, 999, ispseudoprime(4^n-2^(n+1)-1)&write("b091516.txt", c++, " ", 4^n-2^(n+1)-1)) \\ M. F. Hasler, May 15 2008
CROSSREFS
Cf. A091515.
Sequence in context: A202509 A009202 A093112 * A064385 A269520 A009260
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 17 2004
EXTENSIONS
Edited by Ray Chandler, Nov 15 2004
STATUS
approved