login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173889
Triangle T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = (n-2)!*(n-1)!*n!*(n+1)!/12 with c(0) = c(1) = 1 and c(2) = 2, read by rows.
2
1, 1, 1, 1, 2, 1, 1, 12, 12, 1, 1, 120, 720, 120, 1, 1, 360, 21600, 21600, 360, 1, 1, 840, 151200, 1512000, 151200, 840, 1, 1, 1680, 705600, 21168000, 21168000, 705600, 1680, 1, 1, 3024, 2540160, 177811200, 533433600, 177811200, 2540160, 3024, 1
OFFSET
0,5
FORMULA
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = (n-2)!*(n-1)!*n!*(n+1)!/12 with c(0) = c(1) = 1 and c(2) = 2.
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=3..n} (j-2)*(j-1)*j*(j+1) with c(0) = c(1) = 1 and c(2) = 2.
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 2, 1;
1, 12, 12, 1;
1, 120, 720, 120, 1;
1, 360, 21600, 21600, 360, 1;
1, 840, 151200, 1512000, 151200, 840, 1;
1, 1680, 705600, 21168000, 21168000, 705600, 1680, 1;
1, 3024, 2540160, 177811200, 533433600, 177811200, 2540160, 3024, 1;
MATHEMATICA
c[n_]:= c[n]= If[n<3, Fibonacci[n+1], (n-2)!*(n-1)!*n!*(n+1)!/12 ];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 16 2021 *)
PROG
(Magma)
F:=Factorial;
c:= func< n | n eq 2 select Fibonacci(n+1) else F(n-2)*F(n-1)*F(n)*F(n+1)/12 >;
T:= func< n, k | c(n)/(c(k)*c(n-k)) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 16 2021
(Sage)
f=factorial
@CachedFunction
def c(n): return fibonacci(n+1) if (n<3) else f(n-2)*f(n-1)*f(n)*f(n+1)/12
def T(n, k): return c(n)/(c(k)*c(n-k))
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
CROSSREFS
Cf. A173890.
Sequence in context: A297762 A010246 A186430 * A156885 A174718 A176291
KEYWORD
nonn,tabl,less,easy
AUTHOR
Roger L. Bagula, Mar 01 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 16 2021
STATUS
approved