login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = (n-2)!*(n-1)!*n!*(n+1)!/12 with c(0) = c(1) = 1 and c(2) = 2, read by rows.
2

%I #8 Apr 17 2021 02:11:42

%S 1,1,1,1,2,1,1,12,12,1,1,120,720,120,1,1,360,21600,21600,360,1,1,840,

%T 151200,1512000,151200,840,1,1,1680,705600,21168000,21168000,705600,

%U 1680,1,1,3024,2540160,177811200,533433600,177811200,2540160,3024,1

%N Triangle T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = (n-2)!*(n-1)!*n!*(n+1)!/12 with c(0) = c(1) = 1 and c(2) = 2, read by rows.

%H G. C. Greubel, <a href="/A173889/b173889.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = (n-2)!*(n-1)!*n!*(n+1)!/12 with c(0) = c(1) = 1 and c(2) = 2.

%F T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=3..n} (j-2)*(j-1)*j*(j+1) with c(0) = c(1) = 1 and c(2) = 2.

%e The triangle begins as:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 12, 12, 1;

%e 1, 120, 720, 120, 1;

%e 1, 360, 21600, 21600, 360, 1;

%e 1, 840, 151200, 1512000, 151200, 840, 1;

%e 1, 1680, 705600, 21168000, 21168000, 705600, 1680, 1;

%e 1, 3024, 2540160, 177811200, 533433600, 177811200, 2540160, 3024, 1;

%t c[n_]:= c[n]= If[n<3, Fibonacci[n+1], (n-2)!*(n-1)!*n!*(n+1)!/12 ];

%t T[n_, k_]:= c[n]/(c[k]*c[n-k]);

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 16 2021 *)

%o (Magma)

%o F:=Factorial;

%o c:= func< n | n eq 2 select Fibonacci(n+1) else F(n-2)*F(n-1)*F(n)*F(n+1)/12 >;

%o T:= func< n,k | c(n)/(c(k)*c(n-k)) >;

%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 16 2021

%o (Sage)

%o f=factorial

%o @CachedFunction

%o def c(n): return fibonacci(n+1) if (n<3) else f(n-2)*f(n-1)*f(n)*f(n+1)/12

%o def T(n, k): return c(n)/(c(k)*c(n-k))

%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 16 2021

%Y Cf. A173890.

%K nonn,tabl,less,easy

%O 0,5

%A _Roger L. Bagula_, Mar 01 2010

%E Edited by _G. C. Greubel_, Apr 16 2021