login
A054505
Log_b 2 where b is smallest primitive root (A001918) mod n-th prime.
10
1, 1, 2, 1, 1, 14, 1, 2, 1, 24, 1, 26, 27, 18, 1, 1, 1, 1, 6, 8, 4, 1, 16, 34, 1, 44, 1, 57, 12, 72, 1, 10, 1, 1, 70, 141, 1, 40, 1, 1, 1, 44, 34, 1, 106, 1, 180, 1, 21, 72, 66, 190, 235, 48, 190, 1, 154, 147, 204, 159, 1, 93, 22, 274, 1, 121, 304, 1, 1, 164, 314, 292, 1, 1, 134, 1
OFFSET
2,3
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Table 10.2, pp. 216-217.
LINKS
EXAMPLE
Smallest primitive root mod 7 is 3; 2 = 3^2 mod 7; 7 is 4th prime; so a(4) = 2.
MATHEMATICA
a[n_] := Module[{p, b, lg = 1}, b = PrimitiveRoot[p = Prime[n]]; While[ PowerMod[b, lg, p] != 2 , lg++]; lg]; Array[a, 100, 2] (* Jean-François Alcover, Sep 03 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 09 2000
EXTENSIONS
More terms from James A. Sellers, Apr 09 2000
STATUS
approved