login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000198 Largest order of automorphism group of a tournament with n nodes.
(Formerly M2280 N0902)
1

%I M2280 N0902

%S 1,1,3,3,5,9,21,21,81,81,81,243,243,441,1215,1701,1701,6561,6561,6561,

%T 45927,45927,45927,137781,137781,229635,1594323,1594323,1594323,

%U 4782969,4782969,7971615,14348907,33480783,33480783,129140163,129140163,129140163

%N Largest order of automorphism group of a tournament with n nodes.

%C It appears that all terms except a(5) = 5 are divisible by a power of 3. - _Jonathan Vos Post_, Apr 20 2011

%D J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 81.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Joseph Myers, <a href="/A000198/b000198.txt">Table of n, a(n) for n = 1..1000</a>

%H B. Alspach, <a href="http://dx.doi.org/10.4153/CMB-1968-078-3">A combinatorial proof of a conjecture of Goldberg and Moon</a>, Canad. Math. Bull. 11 (1968), 655-661.

%H B. Alspach, <a href="/A002086/a002086.pdf">On point-symmetric tournaments</a>, Canad. Math. Bull., 13 (1970), 317-323. [Annotated copy] See g(n) as defined on page 317 (NOT on page 322).

%H B. Alspach and J. L. Berggren, <a href="http://dx.doi.org/10.4153/CMB-1973-003-7">On the determination of the maximum order of the group of a tournament</a>, Canad. Math. Bull 16 (1973), 11-14.

%H J. D. Dixon, <a href="http://dx.doi.org/10.4153/CMB-1967-048-9">The maximum order of the group of a tournament</a>, Canad. Math. Bull. 10 (1967), 503-505.

%H <a href="/index/To#tournament">Index entries for sequences related to tournaments</a>

%F a(3^k) = 3^((3^k - 1)/2), a(5*3^k) = 5*3^((5*3^k - 5)/2), a(7*3^k) = 7*3^((7*3^k - 5)/2), and, for all other n, a(n) = max (a(i)a(n-i)) where the max is taken over 1 <= i <= n-1 (from Alspach and Berggren (1973) Theorem 4).

%F a(3r) = (3^r)a(r), a(n) = a(n-1) for n = 1, 2 or 4 mod 9, a(9k+8) = max(a(9k+7), a(5)a(9k+3)), a(9k+5) = max(a(2)a(9k+3), a(5)a(9k), a(7)a(9k-2)), a(9k+7) = a(7)a(9k) (from Alspach and Berggren (1973) Theorem 5).

%p a:= proc(n) local t, r; t:= irem(n, 9);

%p `if`(3^ilog[3](n)=n, 3^((3^ilog[3](n)-1)/2),

%p `if`(irem(n, 5, 'r')=0 and 3^ilog[3](r)=r, 5*3^((5*3^ilog[3](r)-5)/2),

%p `if`(irem(n, 7, 'r')=0 and 3^ilog[3](r)=r, 7*3^((7*3^ilog[3](r)-5)/2),

%p `if`(irem(n, 3, 'r')=0, 3^r*a(r),

%p `if`(t in {1, 2, 4}, a(n-1),

%p `if`(t = 8, max(a(n-1), a(5)*a(n-5)),

%p `if`(t = 5, max(a(2)*a(n-2), a(5)*a(n-5), a(7)*a(n-7)),

%p a(7)*a(n-7) )))))))

%p end:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Jun 29 2012

%t a[n_] := a[n] = With[{t = Mod[n, 9]}, Which[ IntegerQ[Log[3, n]], 3^((1/2)*(n-1)),{q, r} = QuotientRemainder[n, 5]; r == 0 && IntegerQ[Log[3, q]], 5*3^((1/2)*(n-5)),{q, r} = QuotientRemainder[n, 7];r == 0 && IntegerQ[Log[3, q]], 7*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 3]; r == 0, 3^q*a[q],MemberQ[{1, 2, 4}, t], a[n-1],t == 8, Max[a[n-1], a[5]*a[n-5]], t == 5, Max[a[2]*a[n-2],a[5]*a[n-5], a[7]*a[n-7]],True, a[7]*a[n-7]]]; Table[a[n], {n, 1, 38}] (* _Jean-Fran├žois Alcover_, Nov 12 2012, after _Alois P. Heinz_ *)

%K nonn,nice

%O 1,3

%A _N. J. A. Sloane_

%E Edited and extended by _Joseph Myers_, Jun 28 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)