login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209083 Largest number of the form C(n,x) + C(n,y) + C(n,z) where x + y + z = n. 1
3, 3, 5, 9, 14, 25, 45, 77, 141, 261, 505, 935, 1849, 3445, 6865, 12885, 25741, 48637, 97241, 184775, 369513, 705453, 1410865, 2704179, 5408313, 10400625, 20801201, 40116627, 80233201, 155117549, 310235041, 601080421, 1202160781, 2333606253, 4667212441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

lim{n->infinity} a(n+1)/a(n)=2. Subset of A034703. From an idea of Michael B. Porter.

For n > 6, it appears that the solution is always x = n mod 2, y = z = floor(n/2). - T. D. Noe, Mar 05 2012

LINKS

Paolo P. Lava, Table of n, a(n) for n = 0..360

EXAMPLE

For n=5 [x,y,z] can be [0,0,5], [0,1,4], [0,2,3], [1,1,3] and [1,2,2].

C(5,0) + C(5,0) + C(5,5) = 1+1+1 = 3.

C(5,0) + C(5,1) + C(5,4) = 1+5+5 = 11.

C(5,0) + C(5,2) + C(5,3) = 1+10+10 =21.

C(5,1) + C(5,1) + C(5,3) = 5+5+10 = 20.

C(5,1) + C(5,2) + C(5,2) = 5+10+10 = 25.

Therefore 25 is in the sequence.

MAPLE

with(numtheory);

P:=proc(i)

local c, m, n, s, v;

v:=array[1..3];

for n from 3 to i do

  s:=0; v[1]:=0; v[2]:=0; v[3]:=n;

  while v[1]<=floor(n/3) do

    while v[2]<=floor((n-v[1])/2) do

      c:=0;

      for m from 1 to 3 do c:=c+binomial(n, v[m]); od;

      if c>s then s:=c; fi;

      v[2]:=v[2]+1; v[3]:=v[3]-1;

    od;

    v[1]:=v[1]+1; v[2]:=v[1]; v[3]:=n-v[1]-v[2];

  od;

  print(s);

od;

end:

P(1000);

MATHEMATICA

Table[Maximize[{Binomial[n, a] + Binomial[n, b] + Binomial[n, c], a + b + c == n, a >= 0, b >= 0, c >= 0, a <= n, b <= n, c <= n}, {a, b, c}, Integers][[1]], {n, 0, 30}] (* T. D. Noe, Mar 05 2012 *)

PROG

(PARI) A209083(n)={local(a, b, c, s); s=-1; for(a=0, n, for(b=0, n-a, c=n-a-b; s=max(s, binomial(n, a)+binomial(n, b)+binomial(n, c)))); s}

CROSSREFS

Cf. A034703.

Sequence in context: A104220 A321986 A325187 * A137202 A146926 A000198

Adjacent sequences:  A209080 A209081 A209082 * A209084 A209085 A209086

KEYWORD

nonn

AUTHOR

Paolo P. Lava, Mar 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 07:03 EST 2019. Contains 329978 sequences. (Running on oeis4.)