This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209083 Largest number of the form C(n,x) + C(n,y) + C(n,z) where x + y + z = n. 1
 3, 3, 5, 9, 14, 25, 45, 77, 141, 261, 505, 935, 1849, 3445, 6865, 12885, 25741, 48637, 97241, 184775, 369513, 705453, 1410865, 2704179, 5408313, 10400625, 20801201, 40116627, 80233201, 155117549, 310235041, 601080421, 1202160781, 2333606253, 4667212441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS lim{n->infinity} a(n+1)/a(n)=2. Subset of A034703. From an idea of Michael B. Porter. For n > 6, it appears that the solution is always x = n mod 2, y = z = floor(n/2). - T. D. Noe, Mar 05 2012 LINKS Paolo P. Lava, Table of n, a(n) for n = 0..360 EXAMPLE For n=5 [x,y,z] can be [0,0,5], [0,1,4], [0,2,3], [1,1,3] and [1,2,2]. C(5,0) + C(5,0) + C(5,5) = 1+1+1 = 3. C(5,0) + C(5,1) + C(5,4) = 1+5+5 = 11. C(5,0) + C(5,2) + C(5,3) = 1+10+10 =21. C(5,1) + C(5,1) + C(5,3) = 5+5+10 = 20. C(5,1) + C(5,2) + C(5,2) = 5+10+10 = 25. Therefore 25 is in the sequence. MAPLE with(numtheory); P:=proc(i) local c, m, n, s, v; v:=array[1..3]; for n from 3 to i do   s:=0; v[1]:=0; v[2]:=0; v[3]:=n;   while v[1]<=floor(n/3) do     while v[2]<=floor((n-v[1])/2) do       c:=0;       for m from 1 to 3 do c:=c+binomial(n, v[m]); od;       if c>s then s:=c; fi;       v[2]:=v[2]+1; v[3]:=v[3]-1;     od;     v[1]:=v[1]+1; v[2]:=v[1]; v[3]:=n-v[1]-v[2];   od;   print(s); od; end: P(1000); MATHEMATICA Table[Maximize[{Binomial[n, a] + Binomial[n, b] + Binomial[n, c], a + b + c == n, a >= 0, b >= 0, c >= 0, a <= n, b <= n, c <= n}, {a, b, c}, Integers][[1]], {n, 0, 30}] (* T. D. Noe, Mar 05 2012 *) PROG (PARI) A209083(n)={local(a, b, c, s); s=-1; for(a=0, n, for(b=0, n-a, c=n-a-b; s=max(s, binomial(n, a)+binomial(n, b)+binomial(n, c)))); s} CROSSREFS Cf. A034703. Sequence in context: A104220 A321986 A325187 * A137202 A146926 A000198 Adjacent sequences:  A209080 A209081 A209082 * A209084 A209085 A209086 KEYWORD nonn AUTHOR Paolo P. Lava, Mar 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 07:03 EST 2019. Contains 329978 sequences. (Running on oeis4.)