login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321986
Number of integer pairs (x,y) with x+y < 3*n/4, x-y < 3*n/4 and -x/2 < y < 2*x.
1
0, 0, 1, 3, 3, 5, 9, 14, 14, 19, 26, 34, 34, 42, 52, 63, 63, 74, 87, 101, 101, 115, 131, 148, 148, 165, 184, 204, 204, 224, 246, 269, 269, 292, 317, 343, 343, 369, 397, 426, 426
OFFSET
0,4
COMMENTS
The Comtet formula for I(n) = round(9*n^2+18-n*b(n)/16) with b(n)=bar(7,4,1,10) with period 4, is missing divisors (32?) somewhere.
REFERENCES
L. Comtet, Advanced Combinatorics (Reidel, 1974), page 122, exercise 19 sequence (2).
FORMULA
G.f.: -x^2*(x^2 - x + 1)*(x^5 + x^4 + x^3 + 2*x^2 + 3*x + 1) / ( (1+x)^2*(x^2+1)^2*(x-1)^3 ).
EXAMPLE
The 3 solutions for n=3 or n=4 are (x,y)=(1,0), (1,1), (2,0).
MAPLE
A056594 := proc(n)
if type (n, 'odd') then
0;
else
(-1)^(n/2) ;
end if;
end proc:
A008619 := proc(n)
1+iquo(n, 2) ;
end proc:
A321986 := proc(n)
if n =0 then
0;
else
-11*n +35/2 +9*n^2 +9/2*(-1)^n -3*(-1)^n*n +22*A056594(n) -2*A056594(n-1) +12*(-1)^A008619(n)*A008619(n) ;
%/32 ;
end if;
end proc:
seq(A321986(n), n=0..30) ;
CROSSREFS
Sequence in context: A350393 A325849 A104220 * A325187 A209083 A137202
KEYWORD
nonn,easy,less
AUTHOR
R. J. Mathar, Nov 23 2018
STATUS
approved