login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer pairs (x,y) with x+y < 3*n/4, x-y < 3*n/4 and -x/2 < y < 2*x.
1

%I #7 Nov 23 2018 12:09:01

%S 0,0,1,3,3,5,9,14,14,19,26,34,34,42,52,63,63,74,87,101,101,115,131,

%T 148,148,165,184,204,204,224,246,269,269,292,317,343,343,369,397,426,

%U 426

%N Number of integer pairs (x,y) with x+y < 3*n/4, x-y < 3*n/4 and -x/2 < y < 2*x.

%C The Comtet formula for I(n) = round(9*n^2+18-n*b(n)/16) with b(n)=bar(7,4,1,10) with period 4, is missing divisors (32?) somewhere.

%D L. Comtet, Advanced Combinatorics (Reidel, 1974), page 122, exercise 19 sequence (2).

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-2,0,0,-1,1).

%F G.f.: -x^2*(x^2 - x + 1)*(x^5 + x^4 + x^3 + 2*x^2 + 3*x + 1) / ( (1+x)^2*(x^2+1)^2*(x-1)^3 ).

%e The 3 solutions for n=3 or n=4 are (x,y)=(1,0), (1,1), (2,0).

%p A056594 := proc(n)

%p if type (n,'odd') then

%p 0;

%p else

%p (-1)^(n/2) ;

%p end if;

%p end proc:

%p A008619 := proc(n)

%p 1+iquo(n,2) ;

%p end proc:

%p A321986 := proc(n)

%p if n =0 then

%p 0;

%p else

%p -11*n +35/2 +9*n^2 +9/2*(-1)^n -3*(-1)^n*n +22*A056594(n) -2*A056594(n-1) +12*(-1)^A008619(n)*A008619(n) ;

%p %/32 ;

%p end if;

%p end proc:

%p seq(A321986(n),n=0..30) ;

%K nonn,easy,less

%O 0,4

%A _R. J. Mathar_, Nov 23 2018