The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211668 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 3. 10
 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p), p > 1, q > 1", the resulting g.f. is g(x) = 1/(1-x)*Sum_{k>=0} x^(q^(p^k)) = (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1-x). LINKS Table of n, a(n) for n=1..86. FORMULA a(3^(2^n)) = a(3^(2^(n-1))) + 1, for n >= 1. G.f.: g(x) = 1/(1-x)*Sum_{k >= 0} x^(3^(2^k)) = (x^3 + x^9 + x^81 + x^6561 + x^43946721 + ...)/(1 - x). EXAMPLE a(n) = 1, 2, 3, 4, 5 for n = 3^1, 3^2, 3^4, 3^8, 3^16, i.e., n = 3, 9, 81, 6561, 43946721. MATHEMATICA a[n_] := Length[NestWhileList[Sqrt, n, # >= 3 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *) PROG (PARI) a(n) = {my(nbi = 0); if (n < 3, return (nbi)); r = n; nbi= 1; while ((nr = sqrt(r)) >= 3, nbi++; r = nr); return (nbi); } \\ Michel Marcus, Oct 23 2014 (PARI) A211668(n, c=0)={while(n>=3, n=sqrtint(n); c++); c} \\ M. F. Hasler, Dec 07 2018 (Python) from sympy import integer_log A048766=lambda n: integer_log(n, 3)[0].bit_length() # Nathan L. Skirrow, May 17 2023 CROSSREFS Cf. A001069, A010096, A211662, A211666, A211670. Sequence in context: A348674 A276502 A138902 * A255270 A211670 A036452 Adjacent sequences: A211665 A211666 A211667 * A211669 A211670 A211671 KEYWORD base,nonn AUTHOR Hieronymus Fischer, Apr 30 2012 EXTENSIONS Edited by Michel Marcus, Oct 23 2014 and M. F. Hasler, Dec 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 11:46 EST 2023. Contains 367678 sequences. (Running on oeis4.)