login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211668 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 3. 10
0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p), p > 1, q > 1", the resulting g.f. is g(x) = 1/(1-x)*Sum_{k>=0} x^(q^(p^k))

  = (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1-x).

LINKS

Table of n, a(n) for n=1..86.

FORMULA

a(3^(2^n)) = a(3^(2^(n-1))) + 1, for n >= 1.

G.f.: g(x) = 1/(1-x)*Sum_{k >= 0} x^(3^(2^k))

  = (x^3 + x^9 + x^81 + x^6561 + x^43946721 + ...)/(1 - x).

EXAMPLE

a(n) = 1, 2, 3, 4, 5 for n = 3^1, 3^2, 3^4, 3^8, 3^16, i.e., n = 3, 9, 81, 6561, 43946721.

MATHEMATICA

a[n_] := Length[NestWhileList[Sqrt, n, # >= 3 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)

PROG

(PARI) a(n) = {my(nbi = 0); if (n < 3, return (nbi)); r = n; nbi= 1; while ((nr = sqrt(r)) >= 3, nbi++; r = nr); return (nbi); } \\ Michel Marcus, Oct 23 2014

(PARI) A211668(n, c=0)={while(n>=3, n=sqrtint(n); c++); c} \\ M. F. Hasler, Dec 07 2018

CROSSREFS

Cf. A001069, A010096, A211662, A211666, A211670.

Sequence in context: A055642 A276502 A138902 * A255270 A211670 A036452

Adjacent sequences:  A211665 A211666 A211667 * A211669 A211670 A211671

KEYWORD

base,nonn

AUTHOR

Hieronymus Fischer, Apr 30 2012

EXTENSIONS

Edited by Michel Marcus, Oct 23 2014 and M. F. Hasler, Dec 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 03:27 EST 2019. Contains 329872 sequences. (Running on oeis4.)