login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211670
Number of iterations (...f_4(f_3(f_2(n))))...) such that the result is < 2, where f_j(x):=x^(1/j).
8
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
OFFSET
1,4
COMMENTS
Different from A001069, but equal for n < 16.
FORMULA
a(2^(n!)) = a(2^((n-1)!))+1, for n>1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^(2^(k!)). The explicit first terms of the g.f. are g(x) = (x^2+x^4+x^64+x^16777216+...)/(1-x).
EXAMPLE
a(n)=1, 2, 3, 4, 5 for n=2^(1!), 2^(2!), 2^(3!), 2^(4!), 2^(5!) =2, 4, 64, 16777216, 16777216^5.
PROG
(Python)
def A084558(n):
i=1
while n: i+=1; n//=i
return(i-1)
A211670=lambda n: n and A084558(n.bit_length()-1) # Nathan L. Skirrow, May 17 2023
KEYWORD
base,nonn
AUTHOR
Hieronymus Fischer, Apr 30 2012
STATUS
approved