login
A211669
Number of iterations f(f(f(...(n)...))) such that the result is < 2, where f(x) = cube root of x.
4
0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,8
COMMENTS
For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p)", with p > 1, q > 1, the resulting g.f. is g(x) = 1/(1 - x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1 - x).
The first term that equals 3 is a(512). - Harvey P. Dale, Jan 02 2015
FORMULA
a(2^(3^n)) = a(2^(3^(n-1))) + 1, for n >= 1.
G.f.: 1/(1-x)*Sum_{k>=0} x^(2^(3^k))
= (x^2 + x^8 + x^512 + x^134217728 + ...)/(1 - x).
EXAMPLE
a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^3, 2^9, 2^27, 2^81, ..., i.e., n = 2, 8, 512, 134217728, 2417851639229258349412352, ... = A023365.
MATHEMATICA
Table[Length[NestWhileList[Surd[#, 3]&, n, #>=2&]], {n, 90}]-1 (* Harvey P. Dale, Jan 02 2015 *)
PROG
(PARI) a(n, c=0)={while(n>=2, n=sqrtnint(n, 3); c++); c} \\ M. F. Hasler, Dec 07 2018
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Apr 30 2012
EXTENSIONS
Edited by M. F. Hasler, Dec 07 2018
STATUS
approved