login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178487
a(n) = floor(n^(1/5)): integer part of fifth root of n.
5
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
0,33
COMMENTS
Each term k appears (k+1)^5 - k^5 times consecutively (A022521). - Bernard Schott, Mar 07 2023
FORMULA
G.f.: Sum_{k>=1} x^(k^5)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A253206(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023
MAPLE
seq(floor(n^(1/5)), n=0..100); # Ridouane Oudra, Feb 26 2023
MATHEMATICA
Floor[Range[0, 120]^(1/5)] (* Harvey P. Dale, Aug 15 2012 *)
PROG
(PARI) A178487(n)=floor(sqrtn(n+.5, 5))
(PARI) a(n) = sqrtnint(n, 5); \\ Michel Marcus, Dec 22 2016
(Magma) [n eq 0 select 0 else Iroot(n, 5): n in [0..110]]; // Bruno Berselli, Feb 20 2015
CROSSREFS
Sequences a(n) = floor(n^(1/k)): A001477 (k=1), A000196 (k=2), A048766 (k=3), A255270 (k=4), this sequence (k= 5), A178489 (k=6), A057427 (k->oo).
Sequence in context: A113679 A262438 A044931 * A280560 A044932 A211669
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Oct 09 2010
STATUS
approved