



1371, 1372, 1381, 1383, 1392, 1393, 1471, 1472, 1491, 1494, 1502, 1504, 1581, 1583, 1591, 1594, 1613, 1614, 1692, 1693, 1702, 1704, 1713, 1714, 2371, 2372, 2381, 2383, 2392, 2393, 2571, 2572, 2601, 2605, 2612, 2615, 2681, 2683, 2701, 2705, 2723, 2725
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are 5!=120 terms in this finite sequence. Its origin is the fact that numbers whose decimal expansion is a permutation of 12345 are all of the form 9k+6.


LINKS



FORMULA

a(n) + a(5!+1n) = 7406.
a(n) == 1, 2, 3, 4 or 5 (mod 10).
a(n+6)a(n) is an element of { 100, 110, 111, 200, 220, 222, 679 }.
a(n+6)a(n) = 679 iff (n1)%24 > 17, where % denotes the remainder upon division.
a(n+6)a(n) = 200, 220 or 222 iff (n1)%30 > 23, i.e. n==25,...,30 (mod 30).


PROG

(PARI) v=vector(5, i, 10^(i1))~; vecsort(vector(5!, i, numtoperm(5, i)*v))
is_A178475(x)= { vecsort(Vec(Str(x)))==Vec("12345") }
forstep( m=12345, 54321, 9, is_A178475(m) & print1(m", "))


CROSSREFS



KEYWORD

fini,full,nonn,base,easy


AUTHOR



STATUS

approved



