Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 13 2013 20:24:30
%S 1371,1372,1381,1383,1392,1393,1471,1472,1491,1494,1502,1504,1581,
%T 1583,1591,1594,1613,1614,1692,1693,1702,1704,1713,1714,2371,2372,
%U 2381,2383,2392,2393,2571,2572,2601,2605,2612,2615,2681,2683,2701,2705,2723,2725
%N (A178475(n)-6)/9.
%C There are 5!=120 terms in this finite sequence. Its origin is the fact that numbers whose decimal expansion is a permutation of 12345 are all of the form 9k+6.
%H Nathaniel Johnston, <a href="/A178485/b178485.txt">Table of n, a(n) for n = 1..120</a> (full sequence)
%F a(n) + a(5!+1-n) = 7406.
%F a(n) == 1, 2, 3, 4 or 5 (mod 10).
%F a(n+6)-a(n) is an element of { 100, 110, 111, 200, 220, 222, 679 }.
%F a(n+6)-a(n) = 679 iff (n-1)%24 > 17, where % denotes the remainder upon division.
%F a(n+6)-a(n) = 200, 220 or 222 iff (n-1)%30 > 23, i.e. n==25,...,30 (mod 30).
%o (PARI) v=vector(5,i,10^(i-1))~; vecsort(vector(5!,i,numtoperm(5,i)*v))
%o is_A178475(x)= { vecsort(Vec(Str(x)))==Vec("12345") }
%o forstep( m=12345,54321,9, is_A178475(m) & print1(m","))
%Y Cf. A030298, A030299, A055089, A060117, A178486, A191819, A191820.
%K fini,full,nonn,base,easy
%O 1,1
%A _M. F. Hasler_, May 28 2010