The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211671 Least prime p such that the polynomial x^n - x^(n-1) -...- 1 (mod p) has n distinct zeros. 1
 2, 11, 47, 137, 691, 25621, 59233, 2424511, 2607383, 78043403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is the characteristic polynomial of the n-step Fibonacci and Lucas sequences. For composite p, the polynomial can have more than n zeros! See A211672. LINKS Table of n, a(n) for n=1..10. EXAMPLE For p = 11, x^2-x-1 = (x+3)(x+7) (mod p). For p = 47, x^3-x^2-x-1 = (x+21)(x+30)(x+42) (mod p). For p = 137, x^4-x^3-x^2-x-1 = (x+12)(x+79)(x+85)(x+97) (mod p). MATHEMATICA Clear[x]; Table[poly = x^n - Sum[x^k, {k, 0, n - 1}]; k = 1; While[p = Prime[k]; cnt = 0; Do[If[Mod[poly, p] == 0, cnt++], {x, 0, p - 1}]; cnt < n, k++]; p, {n, 5}] PROG (PARI) N=10^9; default(primelimit, N); a(n)={my(P=x^n-sum(k=0, n-1, x^k) ); forprime(p=2, N, if( #polrootsmod(P, p)==n, return(p) ) ); } /* Joerg Arndt, Apr 15 2013 */ CROSSREFS Cf. A045468 (n=2), A106279 (n=3), A106280 (n=4), A106281 (n=5). Cf. A211672 (for composite p). Sequence in context: A142346 A106980 A089682 * A198693 A178710 A050929 Adjacent sequences: A211668 A211669 A211670 * A211672 A211673 A211674 KEYWORD nonn,hard,more AUTHOR T. D. Noe, Apr 18 2012 EXTENSIONS Term a(8) - a(10) from Joerg Arndt, Apr 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 19:02 EDT 2023. Contains 365581 sequences. (Running on oeis4.)