|
|
A089682
|
|
Primes of the form 3*m^2 - 1.
|
|
7
|
|
|
2, 11, 47, 107, 191, 431, 587, 971, 1451, 2027, 2351, 2699, 3467, 4799, 5807, 6911, 7499, 8111, 8747, 10091, 10799, 14699, 15551, 16427, 17327, 18251, 25391, 27647, 36299, 41771, 44651, 55487, 57131, 62207, 67499, 71147, 74891, 80687, 92927
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
431 and 27647 also have the form 2*m^3-1 (431 = 3*12^2-1 = 2*6^3-1 and 27647 = 3*96^2-1 = 2*24^3-1). [Howard Berman (howard_berman(AT)hotmail.com), May 09 2009]
Obviously m must be either 1 or an even number. So this consists of 1 together with primes of the form 12*u^2 - 1. - N. J. A. Sloane, Aug 09 2019
|
|
REFERENCES
|
M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
|
|
LINKS
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) [a: n in [0..200] | IsPrime(a) where a is 3*n^2-1]; // Vincenzo Librandi, Jul 16 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|