login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089682 Primes of the form 3*m^2 - 1. 7
2, 11, 47, 107, 191, 431, 587, 971, 1451, 2027, 2351, 2699, 3467, 4799, 5807, 6911, 7499, 8111, 8747, 10091, 10799, 14699, 15551, 16427, 17327, 18251, 25391, 27647, 36299, 41771, 44651, 55487, 57131, 62207, 67499, 71147, 74891, 80687, 92927 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
431 and 27647 also have the form 2*m^3-1 (431 = 3*12^2-1 = 2*6^3-1 and 27647 = 3*96^2-1 = 2*24^3-1). [Howard Berman (howard_berman(AT)hotmail.com), May 09 2009]
Or, primes p such that 3*(p+1) is a square. [Vincenzo Librandi, Nov 18 2010]
Obviously m must be either 1 or an even number. So this consists of 1 together with primes of the form 12*u^2 - 1. - N. J. A. Sloane, Aug 09 2019
REFERENCES
M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
LINKS
MATHEMATICA
Select[Table[3 n^2 - 1, {n, 0, 2000}], PrimeQ] (* Vincenzo Librandi, Jul 16 2012 *)
PROG
(Magma) [a: n in [0..200] | IsPrime(a) where a is 3*n^2-1]; // Vincenzo Librandi, Jul 16 2012
CROSSREFS
Primes in A080663.
Sequence in context: A229019 A142346 A106980 * A211671 A198693 A178710
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Jan 05 2004
EXTENSIONS
More terms from Rick L. Shepherd, May 18 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:17 EST 2023. Contains 367717 sequences. (Running on oeis4.)