login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178710
Partial sums of floor(4^n/7).
1
0, 2, 11, 47, 193, 778, 3118, 12480, 49929, 199725, 798911, 3195656, 12782636, 51130558, 204522247, 818089003, 3272356029, 13089424134, 52357696554, 209430786236, 837723144965, 3350892579881, 13403570319547, 53614281278212, 214457125112872
OFFSET
1,2
COMMENTS
Partial sums of A037521.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((8*4^n - 14*n - 13)/42).
a(n) = floor((8*4^n - 14*n - 8)/42).
a(n) = ceiling((8*4^n - 14*n - 18)/42).
a(n) = round((8*4^n - 14*n - 8)/42).
a(n) = a(n-3) + 3*4^(n-2) - 1, n > 3.
a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3) - 5*a(n-4) + 4*a(n-5), n > 5.
G.f.: x^2*(2+x)/ ( (1-4*x)*(1+x+x^2)*(1-x)^2 ).
EXAMPLE
a(4) = 0 + 2 + 9 + 36 = 47.
MAPLE
A178710 := proc(n) add( floor(4^i/7), i=0..n) ; end proc:
MATHEMATICA
Accumulate[Floor[4^Range[30]/7]] (* or *) LinearRecurrence[{5, -4, 1, -5, 4}, {0, 2, 11, 47, 193}, 30] (* Harvey P. Dale, Aug 15 2015 *)
PROG
(Magma) [Round((8*4^n-14*n-13)/42): n in [1..30]]; // Vincenzo Librandi, Jun 21 2011
(PARI) vector(30, n, ((8*4^n-14*n-8)/42)\1) \\ G. C. Greubel, Jan 25 2019
(Sage) [floor((8*4^n-14*n-8)/42) for n in (1..30)] # G. C. Greubel, Jan 25 2019
CROSSREFS
Cf. A037521.
Sequence in context: A211671 A374179 A198693 * A050929 A019005 A112288
KEYWORD
nonn,less
AUTHOR
Mircea Merca, Dec 26 2010
STATUS
approved