login
A178709
Position of start of first appearance of n consecutive 1's in the binary expansion of Pi.
1
3, 11, 11, 11, 11, 11, 451, 645, 645, 645, 5212, 18123, 18123, 58276, 58276, 80697, 80697, 80697, 1146746, 1962901, 3296306, 9772065, 9772065, 9772065, 47536571, 169338693, 169338693, 207861698, 207861698, 207861698
OFFSET
1,1
COMMENTS
Out of the first 2^28 binary digits, 134220460 are "0" and 134214996 are "1". - Robert G. Wilson v, Jun 09 2010
This sequence ignores bits in the integer part of the binary expansion of Pi.
EXAMPLE
6 consecutive 1's are first found beginning at the 11th position in Pi's binary expansion, so the sixth term in this sequence is 11.
MATHEMATICA
pib = ToString@ FromDigits[ RealDigits[Pi - 3, 2, 2^28][[1]]]; f[n_] := 2 + StringPosition[ pib, ToString[(10^n - 1)/9], 1][[1, 1]]; Array[f, 30] (* Robert G. Wilson v, Jun 09 2010 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Will Nicholes, Jun 06 2010
EXTENSIONS
a(14)-a(30) from Robert G. Wilson v, Jun 09 2010
STATUS
approved