login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178711
Partial sums of floor(5^n/7).
1
0, 3, 20, 109, 555, 2787, 13947, 69750, 348767, 1743856, 8719302, 43596534, 217982694, 1089913497, 5449567514, 27247837603, 136239188049, 681195940281, 3405979701441, 17029898507244, 85149492536261, 425747462681350, 2128737313406796, 10643686567034028, 53218432835170188
OFFSET
1,2
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((5*5^n - 14*n - 14)/28).
a(n) = floor((5*5^n - 14*n - 5)/28).
a(n) = ceiling((5*5^n - 14*n - 23)/28).
a(n) = a(n-6) + 558*5^(n-5) - 3, n > 6.
G.f.: -x^2*(2*x^2 - x + 3)/((x-1)^2*(x+1)*(5*x-1)*(x^2-x+1)). [Colin Barker, Oct 27 2012]
EXAMPLE
a(7) = 0 + 3 + 17 + 89 + 446 + 2232 + 11160 = 13947.
MAPLE
seq(floor((5*5^n-14*n-5)/28), n=1..25)
MATHEMATICA
Accumulate[Floor[5^Range[30]/7]] (* or *) LinearRecurrence[{7, -11, 4, 7, -11, 5}, {0, 3, 20, 109, 555, 2787}, 30] (* Harvey P. Dale, May 27 2018 *)
PROG
(Magma) [Round((5*5^n-14*n-14)/28): n in [1..30]]; // Vincenzo Librandi, Jun 21 2011
(PARI) vector(30, n, ((5^(n+1)-14*n-5)/28)\1) \\ G. C. Greubel, Jan 24 2019
(Sage) [floor((5^(n+1)-14*n-5)/28) for n in (1..30)] # G. C. Greubel, Jan 24 2019
CROSSREFS
Sequence in context: A158243 A139471 A154641 * A257067 A108911 A005096
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 26 2010
STATUS
approved