login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257067
Number of length 5 1..(n+1) arrays with every leading partial sum divisible by 2 or 3
1
3, 20, 113, 243, 1024, 1636, 3866, 6599, 12387, 16807, 32768, 41744, 66291, 90598, 133205, 161051, 248832, 292932, 401910, 501113, 661703, 759375, 1048576, 1185856, 1507979, 1788296, 2222649, 2476099, 3200000, 3532100, 4287258, 4926235, 5889323
OFFSET
1,1
COMMENTS
Row 5 of A257062
LINKS
FORMULA
Empirical: a(n) = a(n-2) +a(n-3) -a(n-5) +4*a(n-6) -4*a(n-8) -4*a(n-9) +4*a(n-11) -6*a(n-12) +6*a(n-14) +6*a(n-15) -6*a(n-17) +4*a(n-18) -4*a(n-20) -4*a(n-21) +4*a(n-23) -a(n-24) +a(n-26) +a(n-27) -a(n-29)
Empirical for n mod 6 = 0: a(n) = (32/243)*n^5 + (32/81)*n^4 + (4/9)*n^3 + (1/9)*n^2
Empirical for n mod 6 = 1: a(n) = (32/243)*n^5 + (128/243)*n^4 + (487/486)*n^3 + (853/972)*n^2 + (34/243)*n + (313/972)
Empirical for n mod 6 = 2: a(n) = (32/243)*n^5 + (112/243)*n^4 + (355/486)*n^3 + (145/486)*n^2 + (125/486)*n + (209/243)
Empirical for n mod 6 = 3: a(n) = (32/243)*n^5 + (16/27)*n^4 + (8/9)*n^3 + (8/9)*n^2 + (1/3)*n
Empirical for n mod 6 = 4: a(n) = (32/243)*n^5 + (80/243)*n^4 + (80/243)*n^3 + (40/243)*n^2 + (10/243)*n + (1/243)
Empirical for n mod 6 = 5: a(n) = (32/243)*n^5 + (160/243)*n^4 + (320/243)*n^3 + (320/243)*n^2 + (160/243)*n + (32/243)
EXAMPLE
Some solutions for n=4
..3....2....2....3....3....2....4....4....2....3....2....4....4....4....3....2
..5....4....1....3....3....1....5....5....4....3....1....4....5....4....1....1
..4....3....1....3....4....5....3....3....3....2....1....2....3....2....2....1
..2....5....2....1....5....2....4....3....1....1....4....4....2....5....2....4
..1....2....2....4....3....5....4....3....5....5....1....2....1....5....2....2
CROSSREFS
Sequence in context: A139471 A154641 A178711 * A108911 A005096 A275796
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2015
STATUS
approved