login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257066
Number of length 4 1..(n+1) arrays with every leading partial sum divisible by 2 or 3
1
2, 11, 45, 81, 256, 364, 738, 1149, 1905, 2401, 4096, 4912, 7172, 9297, 12685, 14641, 20736, 23436, 30344, 36455, 45633, 50625, 65536, 71872, 87438, 100767, 120141, 130321, 160000, 172300, 201782, 226521, 261745, 279841, 331776, 352944, 402848
OFFSET
1,1
COMMENTS
Row 4 of A257062
LINKS
FORMULA
Empirical: a(n) = a(n-1) +4*a(n-6) -4*a(n-7) -6*a(n-12) +6*a(n-13) +4*a(n-18) -4*a(n-19) -a(n-24) +a(n-25)
Empirical for n mod 6 = 0: a(n) = (16/81)*n^4 + (4/9)*n^3 + (1/3)*n^2
Empirical for n mod 6 = 1: a(n) = (16/81)*n^4 + (50/81)*n^3 + (107/108)*n^2 + (44/81)*n - (113/324)
Empirical for n mod 6 = 2: a(n) = (16/81)*n^4 + (46/81)*n^3 + (83/108)*n^2 - (7/162)*n + (25/81)
Empirical for n mod 6 = 3: a(n) = (16/81)*n^4 + (20/27)*n^3 + (7/9)*n^2 + (2/3)*n
Empirical for n mod 6 = 4: a(n) = (16/81)*n^4 + (32/81)*n^3 + (8/27)*n^2 + (8/81)*n + (1/81)
Empirical for n mod 6 = 5: a(n) = (16/81)*n^4 + (64/81)*n^3 + (32/27)*n^2 + (64/81)*n + (16/81)
EXAMPLE
Some solutions for n=4
..3....4....2....4....3....3....3....4....4....3....2....2....3....3....4....4
..5....5....2....4....3....5....5....5....5....1....1....2....5....1....5....4
..2....1....5....2....2....1....1....5....3....2....3....2....2....2....3....4
..4....2....1....2....2....3....1....2....4....2....2....4....5....3....3....2
CROSSREFS
Sequence in context: A110679 A127109 A054208 * A209604 A120279 A037751
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2015
STATUS
approved