login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257065
Number of length 3 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.
1
2, 6, 18, 27, 64, 81, 141, 200, 293, 343, 512, 578, 776, 954, 1208, 1331, 1728, 1875, 2291, 2652, 3147, 3375, 4096, 4356, 5070, 5678, 6494, 6859, 8000, 8405, 9497, 10416, 11633, 12167, 13824, 14406, 15956, 17250, 18948, 19683, 21952, 22743, 24831, 26564
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 3*a(n-6) - 3*a(n-7) - 3*a(n-12) + 3*a(n-13) + a(n-18) - a(n-19).
Empirical for n mod 6 = 0: a(n) = (8/27)*n^3 + (4/9)*n^2 + (1/6)*n
Empirical for n mod 6 = 1: a(n) = (8/27)*n^3 + (2/3)*n^2 + (17/18)*n + (5/54)
Empirical for n mod 6 = 2: a(n) = (8/27)*n^3 + (2/3)*n^2 + (7/9)*n - (16/27)
Empirical for n mod 6 = 3: a(n) = (8/27)*n^3 + (8/9)*n^2 + (1/2)*n + (1/2)
Empirical for n mod 6 = 4: a(n) = (8/27)*n^3 + (4/9)*n^2 + (2/9)*n + (1/27)
Empirical for n mod 6 = 5: a(n) = (8/27)*n^3 + (8/9)*n^2 + (8/9)*n + (8/27).
Empirical g.f.: x*(2 + 4*x + 12*x^2 + 9*x^3 + 37*x^4 + 17*x^5 + 54*x^6 + 47*x^7 + 57*x^8 + 23*x^9 + 58*x^10 + 15*x^11 + 24*x^12 + 13*x^13 + 11*x^14 + x^16) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^3*(1 + x + x^2)^3). - Colin Barker, Dec 20 2018
EXAMPLE
Some solutions for n=4:
..3....2....2....4....2....4....2....3....3....4....2....3....4....3....4....2
..5....1....1....2....4....5....4....3....5....5....4....5....4....1....4....1
..4....5....1....2....3....3....2....3....1....1....4....2....1....5....2....3
CROSSREFS
Row 3 of A257062.
Sequence in context: A032649 A237989 A185382 * A066286 A324541 A351875
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2015
STATUS
approved