login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050929 Number of directed multigraphs with loops on 4 nodes with n arcs. 5
1, 2, 11, 47, 198, 713, 2423, 7388, 21003, 55433, 137944, 324659, 729022, 1567139, 3242954, 6479759, 12547894, 23607614, 43267994, 77405064, 135435666, 232137202, 390371944, 644897542, 1047890293, 1676518363, 2643628813 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Israel, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3).

MAPLE

gf:= (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3):

S:= series(gf, x, 101):

seq(coeff(S, x, j), j=0..100); # Robert Israel, Aug 07 2015

MATHEMATICA

nn = 30; n = 4; CoefficientList[Series[CycleIndex[ Join[PairGroup[SymmetricGroup[n], Ordered], Permutations[Range[n*(n - 1) + 1, n*(n - 1) + n]], 2], s] /. Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015*)

CROSSREFS

Cf. A005993, A138107.

Sequence in context: A211671 A198693 A178710 * A019005 A112288 A192699

Adjacent sequences:  A050926 A050927 A050928 * A050930 A050931 A050932

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Dec 30 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 16:50 EST 2018. Contains 317116 sequences. (Running on oeis4.)