login
A007394
Number of strict 7th-order maximal independent sets in cycle graph.
(Formerly M4590)
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 20, 0, 33, 0, 48, 0, 65, 9, 84, 29, 105, 62, 128, 110, 153, 175, 189, 259, 247, 364, 340, 492, 483, 645, 693, 834, 989, 1081, 1392, 1421, 1925, 1904, 2613, 2597, 3492, 3586, 4620, 4978, 6090
OFFSET
1,18
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994.
FORMULA
Empirical g.f.: x^18*(7*x^2-9) / ((x-1)^2*(x+1)^2*(x^9+x^2-1)). - Colin Barker, Mar 29 2014
a(n) = A007389(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - Sean A. Irvine, Jan 02 2018
CROSSREFS
Cf. A007389.
Sequence in context: A136679 A299154 A070929 * A067153 A057405 A167354
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Jan 02 2018
STATUS
approved