|
|
A167354
|
|
Totally multiplicative sequence with a(p) = (p-2)^2 = p^2-4p+4 for prime p.
|
|
1
|
|
|
1, 0, 1, 0, 9, 0, 25, 0, 1, 0, 81, 0, 121, 0, 9, 0, 225, 0, 289, 0, 25, 0, 441, 0, 81, 0, 1, 0, 729, 0, 841, 0, 81, 0, 225, 0, 1225, 0, 121, 0, 1521, 0, 1681, 0, 9, 0, 2025, 0, 625, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(p^e) = ((p-2)^2)^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-2)^2)^e(k).
a(2k) = 0 for k >= 1.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 1 / (3 * Product_{p prime} (1 + 4/p^2)) = 0.08140990308... . - Amiram Eldar, Dec 15 2022
|
|
MATHEMATICA
|
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]^2, {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|