%I
%S 1,0,1,0,9,0,25,0,1,0,81,0,121,0,9,0,225,0,289,0,25,0,441,0,81,0,1,0,
%T 729,0,841,0,81,0,225,0,1225,0,121,0,1521,0,1681,0,9,0,2025,0,625,0
%N Totally multiplicative sequence with a(p) = (p2)^2 = p^24p+4 for prime p.
%H G. C. Greubel, <a href="/A167354/b167354.txt">Table of n, a(n) for n = 1..1000</a>
%F Multiplicative with a(p^e) = ((p2)^2)^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)2)^2)^e(k). a(2k) = 0 for k >= 1, a(n) = A166586(n)^2.
%t a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]  2)^fi[[All, 2]])); Table[a[n]^2, {n, 1, 100}] (* _G. C. Greubel_, Jun 11 2016 *)
%Y Cf. A166586.
%K nonn,mult
%O 1,5
%A _Jaroslav Krizek_, Nov 01 2009
