Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 29 2017 23:03:21
%S 1,2,4,0,-2,8,8,-8,-4,10,8,0,-8,8,16,-16,-10,16,12,0,-8,16,8,-24,-8,
%T 10,24,0,-16,24,16,-24,-20,16,16,0,-10,8,24,-32,-8,32,16,0,-24,24,16,
%U -40,-24,18,28,0,-8,24,32,-32,-16,16,8,0,-32,24,32,-40,-26,32
%N Number of overpartitions of n with even M2-rank minus the number of overpartitions of n with odd M2-rank.
%C a(8n+3) = 0.
%H G. C. Greubel, <a href="/A153182/b153182.txt">Table of n, a(n) for n = 0..1000</a>
%H K. Bringmann and J. Lovejoy, <a href="http://arxiv.org/abs/0712.0631">Overpartitions and class numbers of binary quadratic forms</a>
%F G.f.: 1 + 2Sum_{n >= 1} q^n(1+q)(1+q^3)...(1+q^(2n-1))/((1+q^2)(1+q^4)...(1+q^(2n))^2).
%F G.f.: (1 + 8 * Sum_{k>0} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (1 + 2 * Sum_{k>0} (-1)^k * x^k^2). - _Michael Somos_, Jul 13 2015
%F a(4*n) = A256624(n) = 2 * a(n) - A005875(n). - _Michael Somos_, Jul 13 2015
%F a(8*n + 1) = 2 * A213022(n). a(8*n + 2) = 4 * A213625(n). a(8*n + 5) = 8 * A045831(n). a(8*n + 6) = 8 * A213624(n). - _Michael Somos_, Jul 13 2015
%e G.f. = 1 + 2*x + 4*x^2 - 2*x^4 + 8*x^5 + 8*x^6 - 8*x^7 - 4*x^8 + ...
%t a[n_]:= If[n < 0, 0, SeriesCoefficient[(1 + 8*Sum[(-1)^k x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, (Sqrt[4 n + 1] - 1)/2}])/EllipticTheta[4, 0, x], {x, 0, n}]]; Table[a[n], {n,0,30}] (* _G. C. Greubel_, Nov 29 2017 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 8 * sum(k=1, sqrtint(n+1)-1, (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2, A)) / (1 + 2 * sum(k=1, sqrtint(n), (-1)^k * x^k^2, A)), n))}; /* _Michael Somos_, Jul 13 2015 */
%o (PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, n, x^k / (1 + x^(2*k)) * prod(j=1, k, (1 + x^(2*j - 1)) / (1 + x^(2*j)), 1 + x * O(x^(n-k)))), n))}; /* _Michael Somos_, Jul 13 2015 */
%Y Cf. A005875, A045831, A213022, A213624, A213625, A256624.
%K sign
%O 0,2
%A _Jeremy Lovejoy_, Dec 20 2008