login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126979
a(n) = 24*n + 233.
4
233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073, 1097, 1121, 1145, 1169, 1193, 1217, 1241, 1265, 1289, 1313, 1337, 1361
OFFSET
0,1
COMMENTS
Superhighway created by 'LQTL Ant' L45R135L45R135 from iteration 233 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the turn angle in degrees.
REFERENCES
P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, 2000.
S. Wolfram, A New Kind of Science, 1st ed. Il.: Wolfram Media Inc., 2002.
FORMULA
From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (233 - 209*x)/(1 - x)^2. (End)
E.g.f.: (233 + 24*x)*exp(x). - G. C. Greubel, May 28 2019
MATHEMATICA
Table[24*n + 233, {n, 0, 60}] (* Stefan Steinerberger, Jun 17 2007 *)
LinearRecurrence[{2, -1}, {233, 257}, 60] (* G. C. Greubel, May 28 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((233-209*x)/(1-x)^2) \\ G. C. Greubel, May 28 2019
(Magma) I:=[233, 257]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // G. C. Greubel, May 28 2019
(Sage) ((233-209*x)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
(GAP) a:=[233, 257];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 28 2019
CROSSREFS
Cf. A031041, A017581, A126978, A126980. Has many terms in common with A031041.
Sequence in context: A301828 A132917 A139652 * A127340 A140033 A142182
KEYWORD
easy,nonn
AUTHOR
Robert H Barbour, Mar 20 2007, Jun 12 2007
EXTENSIONS
More terms from Stefan Steinerberger, Jun 17 2007
STATUS
approved