OFFSET
1,1
COMMENTS
Primes in A127338.
A prime number n is in the sequence if for some k it is the absolute value of coefficient of x^10 of the polynomial Prod_{j=0,10}(x-prime(k+j)); the roots of this polynomial are prime(k), ..., prime(k+10).
LINKS
Syed Iddi Hasan, Table of n, a(n) for n = 1..10000
MATHEMATICA
a = {}; Do[If[PrimeQ[Sum[Prime[x + n], {n, 0, 10}]], AppendTo[a, Sum[Prime[x + n], {n, 0, 10}]]], {x, 1, 500}]; a
Select[Total/@Partition[Prime[Range[200]], 11, 1], PrimeQ] (* Harvey P. Dale, Jul 16 2012 *)
PROG
(PARI) {m=125; k=11; for(n=0, m-1, a=sum(j=1, k, prime(n+j)); if(isprime(a), print1(a, ", ")))} \\ Klaus Brockhaus, Jan 13 2007
(PARI) {m=126; k=11; for(n=1, m, a=abs(polcoeff(prod(j=0, k-1, (x-prime(n+j))), k-1)); if(isprime(a), print1(a, ", ")))} \\ Klaus Brockhaus, Jan 13 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 13 2007
STATUS
approved