login
A082251
Primes that are the sum of 9 consecutive primes.
19
127, 401, 439, 479, 593, 881, 929, 977, 1163, 1213, 1321, 1367, 1459, 1511, 1601, 1747, 1801, 1951, 1999, 2053, 2111, 2393, 2713, 3299, 3457, 3517, 3571, 3739, 3793, 4091, 4253, 4621, 4691, 4969, 5413, 5521, 5827, 5987, 6173, 6379, 6947, 7151, 7741
OFFSET
1,1
LINKS
MATHEMATICA
Clear[Sum9Primes]; Sum9Primes[a_]:=Module[{p}, p=Prime[a]+Prime[a+1] +Prime[a+2]+Prime[a+3]+Prime[a+4]+Prime[a+5] +Prime[a+6] +Prime[a+7]+Prime[a+8]]; lst={}; Do[If[PrimeQ[p=Sum9Primes[n]], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 06 2009 *)
PROG
(PARI) \\ primes in the sum of m odd number of consecutive primes. m=9
psumprm(m, n) = { sr=0; s=0; for(j=1, m, s+=prime(j); ); for(x=1, n, s = s - prime(x)+ prime(x+m); if(isprime(s), sr+=1.0/s; print1(s" ")); ); print(); print(sr) }
CROSSREFS
Sequence in context: A143034 A159521 A122691 * A142384 A298237 A299363
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, May 09 2003
STATUS
approved