%I #17 Jan 16 2015 03:32:16
%S 127,401,439,479,593,881,929,977,1163,1213,1321,1367,1459,1511,1601,
%T 1747,1801,1951,1999,2053,2111,2393,2713,3299,3457,3517,3571,3739,
%U 3793,4091,4253,4621,4691,4969,5413,5521,5827,5987,6173,6379,6947,7151,7741
%N Primes that are the sum of 9 consecutive primes.
%H Syed Iddi Hasan, <a href="/A082251/b082251.txt">Table of n, a(n) for n = 1..10000</a>
%t Clear[Sum9Primes];Sum9Primes[a_]:=Module[{p}, p=Prime[a]+Prime[a+1] +Prime[a+2]+Prime[a+3]+Prime[a+4]+Prime[a+5] +Prime[a+6] +Prime[a+7]+Prime[a+8]]; lst={};Do[If[PrimeQ[p=Sum9Primes[n]],AppendTo[lst,p]],{n,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Apr 06 2009 *)
%o (PARI) \\ primes in the sum of m odd number of consecutive primes. m=9
%o psumprm(m,n) = { sr=0; s=0; for(j=1,m, s+=prime(j); ); for(x=1,n, s = s - prime(x)+ prime(x+m); if(isprime(s),sr+=1.0/s; print1(s" ")); ); print(); print(sr) }
%K easy,nonn
%O 1,1
%A _Cino Hilliard_, May 09 2003