|
|
A127337
|
|
Numbers that are the sum of 10 consecutive primes.
|
|
15
|
|
|
129, 158, 192, 228, 264, 300, 340, 382, 424, 468, 510, 552, 594, 636, 682, 732, 780, 824, 870, 912, 954, 1008, 1060, 1114, 1164, 1216, 1266, 1320, 1376, 1434, 1494, 1546, 1596, 1650, 1704, 1752, 1800, 1854, 1914, 1974, 2030, 2084, 2142, 2192, 2250, 2310, 2374
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the absolute value of coefficient of x^9 of the polynomial Product_{j=0..9} (x - prime(n+j)) of degree 10; the roots of this polynomial are prime(n), ..., prime(n+9).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
local i ;
add(ithprime(n+i), i=0..9) ;
end proc:
|
|
MATHEMATICA
|
a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 9}]], {x, 1, 50}]; a
Table[Plus@@Prime[Range[n, n + 9]], {n, 50}] (* Alonso del Arte, Feb 15 2011 *)
ListConvolve[ConstantArray[1, 10], Prime[Range[50]]]
Total/@Partition[Prime[Range[60]], 10, 1] (* Harvey P. Dale, Jan 31 2013 *)
|
|
PROG
|
(PARI) {m=46; k=10; for(n=1, m, print1(a=sum(j=0, k-1, prime(n+j)), ", "))} \\ Klaus Brockhaus, Jan 13 2007
(PARI) {m=46; k=10; for(n=1, m, print1(abs(polcoeff(prod(j=0, k-1, (x-prime(n+j))), k-1)), ", "))} \\ Klaus Brockhaus, Jan 13 2007
(Magma) [&+[ NthPrime(n+k): k in [0..9] ]: n in [1..90] ]; // Vincenzo Librandi, Apr 03 2011
(Python)
from sympy import prime
def a(n): return sum(prime(n + i) for i in range(10))
(Python) # faster version for generating initial segment of sequence
from sympy import nextprime
def aupton(terms):
alst, plst = [], [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
for n in range(terms):
alst.append(sum(plst))
plst = plst[1:] + [nextprime(plst[-1])]
return alst
|
|
CROSSREFS
|
Cf. A011974, A001043, A034961, A034963, A034964, A127333, A127334, A127335, A127336, A127338, A127339.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|