login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127337 Numbers that are the sum of 10 consecutive primes. 15
129, 158, 192, 228, 264, 300, 340, 382, 424, 468, 510, 552, 594, 636, 682, 732, 780, 824, 870, 912, 954, 1008, 1060, 1114, 1164, 1216, 1266, 1320, 1376, 1434, 1494, 1546, 1596, 1650, 1704, 1752, 1800, 1854, 1914, 1974, 2030, 2084, 2142, 2192, 2250, 2310, 2374 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) is the absolute value of coefficient of x^9 of the polynomial Product_{j=0..9} (x - prime(n+j)) of degree 10; the roots of this polynomial are prime(n), ..., prime(n+9).
LINKS
FORMULA
a(n) = A127336(n)+A000040(n+9). - R. J. Mathar, Apr 24 2023
MAPLE
A127337 := proc(n)
local i ;
add(ithprime(n+i), i=0..9) ;
end proc:
seq(A127337(n), n=1..30) ; # R. J. Mathar, Apr 24 2023
MATHEMATICA
a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 9}]], {x, 1, 50}]; a
Table[Plus@@Prime[Range[n, n + 9]], {n, 50}] (* Alonso del Arte, Feb 15 2011 *)
ListConvolve[ConstantArray[1, 10], Prime[Range[50]]]
Total/@Partition[Prime[Range[60]], 10, 1] (* Harvey P. Dale, Jan 31 2013 *)
PROG
(PARI) {m=46; k=10; for(n=1, m, print1(a=sum(j=0, k-1, prime(n+j)), ", "))} \\ Klaus Brockhaus, Jan 13 2007
(PARI) {m=46; k=10; for(n=1, m, print1(abs(polcoeff(prod(j=0, k-1, (x-prime(n+j))), k-1)), ", "))} \\ Klaus Brockhaus, Jan 13 2007
(Magma) [&+[ NthPrime(n+k): k in [0..9] ]: n in [1..90] ]; // Vincenzo Librandi, Apr 03 2011
(Python)
from sympy import prime
def a(n): return sum(prime(n + i) for i in range(10))
print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Dec 09 2021
(Python) # faster version for generating initial segment of sequence
from sympy import nextprime
def aupton(terms):
alst, plst = [], [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
for n in range(terms):
alst.append(sum(plst))
plst = plst[1:] + [nextprime(plst[-1])]
return alst
print(aupton(47)) # Michael S. Branicky, Dec 09 2021
CROSSREFS
Sequence in context: A025324 A230092 A060878 * A185347 A034072 A178228
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 13 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 23:44 EDT 2024. Contains 375795 sequences. (Running on oeis4.)