This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127333 Numbers that are the sum of 6 consecutive primes. 13
 41, 56, 72, 90, 112, 132, 156, 180, 204, 228, 252, 280, 304, 330, 358, 384, 410, 434, 462, 492, 522, 552, 580, 606, 630, 660, 690, 724, 756, 796, 834, 864, 896, 926, 960, 990, 1020, 1054, 1084, 1114, 1140, 1172, 1214, 1250, 1286, 1322, 1362, 1392, 1420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = absolute value of coefficient of x^5 of the polynomial Prod_{j=0,5}(x-prime(n+j)) of degree 6; the zeros of this polynomial are prime(n), ..., prime(n+5). LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 MATHEMATICA a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 5}]], {x, 1, 50}]; a Total/@Partition[Prime[Range[60]], 6, 1] (* Harvey P. Dale, Mar 12 2015 *) PROG (PARI) 1. {m=50; k=6; for(n=0, m-1, print1(a=sum(j=1, k, prime(n+j)), ", "))} 2. {m=50; k=6; for(n=1, m, print1(abs(polcoeff(prod(j=0, k-1, (x-prime(n+j))), k-1)), ", "))} - Klaus Brockhaus, Jan 12 2007 (Sage) BB = primes_first_n(60) list = [] for i in range(55): list.append(BB[i]+BB[i+1]+BB[i+2]+BB[i+3]+BB[i+4]+BB[i+5]) list # Zerinvary Lajos, May 14 2007 (MAGMA) [&+[ NthPrime(n+k): k in [0..5] ]: n in [1..80] ]; /* Vincenzo Librandi, Apr 03 2011 */ CROSSREFS Cf. A011974, A001043, A034961, A034963, A034964, A127334, A127335, A127336, A127337, A127338, A127339. Sequence in context: A282353 A118636 A116345 * A262722 A172406 A161505 Adjacent sequences:  A127330 A127331 A127332 * A127334 A127335 A127336 KEYWORD nonn AUTHOR Artur Jasinski, Jan 11 2007 EXTENSIONS Edited by Klaus Brockhaus, Jan 12 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 06:54 EDT 2019. Contains 326162 sequences. (Running on oeis4.)