login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127332
1
1, 2, 2, 3, 3, 3, 5, 4, 4, 5, 9, 1, 10, 8, 3, 7, 15, 3, 16, 2, 6, 17, 21, -6, 13, 19, 11, 8, 27, -5, 27, 10, 13, 28, 10, -10, 35, 31, 17, -6, 40, -3, 40, 20, -4, 40, 44, -18, 32, 18, 26, 23, 50, 4, 21, 0, 28, 54, 58, -45, 59, 53, 3, 19, 24, 11, 65, 37, 39, 1
OFFSET
1,2
LINKS
FORMULA
M * V where M = A126988 as an infinite lower triangular matrix and V = the Mertens sequence, A002321 as a vector: [1, 0, -1, -1, -2, -1, ...].
a(n) = Sum_{q=1..n} c_q(n), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
EXAMPLE
a(6) = 3 = 6*1 + 3*0 + 2*(-1) + 0*(-1) + 0*(-2) + 1*(-1), where (6, 3, 2, 0, 0, 1) = row 6 of A126988.
MATHEMATICA
Block[{nn = 70, m}, m = Table[Sum[MoebiusMu@k, {k, n}], {n, nn}]; Table[Total@ Array[m[[#]] If[Mod[n, #] == 0, n/#, 0] &, n], {n, nn}]] (* Michael De Vlieger, Jun 14 2018 *)
PROG
(PARI) lista(nn) = {mat = matrix(nn, nn, n, k, if (n % k, 0, n/k)); vec = matrix(nn, 1, n, k, if (k==1, mertens(n), 0)); res = (mat*vec); for (n = 1, nn, print1(res[n, 1], ", "); ); } \\ Michel Marcus, Sep 25 2013
(PARI) a(n) = sum(k=1, n, moebius(k / gcd(n, k)) * eulerphi(k) / eulerphi(k / gcd(n, k))); \\ Daniel Suteu, Jun 23 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Gary W. Adamson, Jan 10 2007
EXTENSIONS
Corrected and extended by Michel Marcus, Sep 25 2013
STATUS
approved