login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127335 Numbers that are the sum of 8 successive primes. 12
77, 98, 124, 150, 180, 210, 240, 270, 304, 340, 372, 408, 442, 474, 510, 546, 582, 620, 660, 696, 732, 768, 802, 846, 888, 928, 966, 1012, 1056, 1104, 1154, 1194, 1236, 1278, 1320, 1362, 1404, 1444, 1480, 1524, 1574, 1622, 1670, 1712, 1758, 1802, 1854, 1900 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = absolute value of coefficient of x^7 of the polynomial Prod_{j=0,7}(x-prime(n+j)) of degree 8; the roots of this polynomial are prime(n), ..., prime(n+7).

LINKS

Table of n, a(n) for n=1..48.

FORMULA

a(n) ~ 8n log n. - Charles R Greathouse IV, Apr 19 2015

MATHEMATICA

a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 7}]], {x, 1, 50}]; a

PROG

(PARI) 1. {m=48; k=8; for(n=1, m, print1(a=sum(j=0, k-1, prime(n+j)), ", "))} 2. {m=48; k=8; for(n=1, m, print1(abs(polcoeff(prod(j=0, k-1, (x-prime(n+j))), k-1)), ", "))} \\ Klaus Brockhaus, Jan 13 2007

(PARI) a(n)=my(p=prime(n)); p+sum(i=2, 8, p=nextprime(p+1)) \\ Charles R Greathouse IV, Apr 19 2015

(MAGMA) [&+[ NthPrime(n+k): k in [0..7] ]: n in [1..90] ]; // Vincenzo Librandi, Apr 03 2011

CROSSREFS

Cf. A011974, A001043, A034961, A034963, A034964, A127333, A127334, A127336, A127337, A127338, A127339.

Sequence in context: A269809 A064902 A247682 * A193570 A154534 A235867

Adjacent sequences:  A127332 A127333 A127334 * A127336 A127337 A127338

KEYWORD

nonn

AUTHOR

Artur Jasinski, Jan 11 2007

EXTENSIONS

Edited by Klaus Brockhaus, Jan 13 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 23:58 EDT 2017. Contains 290682 sequences.