login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122920
Diagonal sums of number triangle A122919.
3
1, 1, 4, 12, 39, 129, 436, 1498, 5218, 18386, 65420, 234734, 848403, 3086001, 11288412, 41499354, 153247278, 568188606, 2114334312, 7893906144, 29561195238, 111007927386, 417918303144, 1577061975492, 5964172347604, 22601012748124, 85806694043116, 326343785428946, 1243200250005995
OFFSET
0,3
COMMENTS
Starting with offset 1 = iterates of M * [1,1,1,0,0,0,...] where M is the tridiagonal matrix with [0,2,2,2,...] as the main diagonal and [1,1,1,...] as the super and subdiagonals. - Gary W. Adamson, Jan 09 2009
Partial sums are Fine numbers (A000957) with offset 3. - Alexander Burstein, Apr 15 2015
LINKS
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
FORMULA
G.f.: ((1-x)*(1-2*x-2*x^2-sqrt(1-4*x))/(2*(2+x)*x^3)).
Conjecture: 2*n*(n+3)*a(n) - (7*n^2+9*n+4)*a(n-1) - 2*(n+1)*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Nov 05 2012
a(n) ~ 2^(2*n+4) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
From Vladimir Reshetnikov, Oct 26 2015: (Start)
a(n) = 9/(16*(-2)^n) + 3*(2*n+4)!*hypergeom([1,n+5/2,n+3], [n+2,n+5], -8)/((n+1)!*(n+4)!).
a(n) = 9/(16*(-2)^n) + 8*2^n*(2*n+5)!!*hypergeom([1,n+7/2], [n+5], -8)/(n+4)! - 4*2^n*(2*n+3)!!*hypergeom([1,n+5/2], [n+4], -8)/(n+3)!. (End)
G.f. A(x) =: y satisfies 0 = (1 - x)^2 - y*(1 - 3*x + 2*x^3) + y^2*(2*x^3 + x^4). - Michael Somos, Oct 26 2015
0 = a(n)*(+16*a(n+1) - 26*a(n+2) - 98*a(n+3) + 36*a(n+4)) + a(n+1)*(+50*a(n+1) + 35*a(n+2) - 179*a(n+3) + 46*a(n+4)) + a(n+2)*(+105*a(n+2) + 47*a(n+3) - 50*a(n+4)) + a(n+3)*(+14*a(n+3) + 4*a(n+4)) for all n>=0. - Michael Somos, Oct 26 2015
EXAMPLE
G.f. = 1 + x + 4*x^2 + 12*x^3 + 39*x^4 + 129*x^5 + 436*x^6 + 1498*x^7 + 5218*x^8 + ...
MATHEMATICA
CoefficientList[Series[((1-x)*(1-2*x-2*x^2-Sqrt[1-4*x])/(2*(2+x)*x^3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
Table[9/(16 (-2)^n) + 3 (2n+4)! HypergeometricPFQ[{1, n+5/2, n+3}, {n+2, n+5}, -8]/((n+1)! (n+4)!), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 26 2015 *)
PROG
(PARI) x='x+O('x^66); Vec(((1-x)*(1-2*x-2*x^2-sqrt(1-4*x))/(2*(2+x)*x^3))) \\ Joerg Arndt, May 08 2013
CROSSREFS
Cf. A000957.
Sequence in context: A149327 A308446 A334458 * A241073 A149328 A149329
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2006
STATUS
approved