login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167769
Pendular trinomial triangle (p=0), read by rows of 2n+1 terms (n>=0), defined by the recurrence : if 0<k<n T(n,k)= T(n-1,k) + p*T(n,2n-1-k); else if n-1<k<2n-1, T(n,k)= T(n-1,k) + T(n,2n-2-k); with T(n,0) = T(n+1,2n) = 1 and T(n+1,2n+1) = T(n+1,2n+2) = 0.
2
1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 6, 8, 6, 3, 1, 0, 0, 1, 4, 10, 18, 24, 18, 10, 4, 1, 0, 0, 1, 5, 15, 33, 57, 75, 57, 33, 15, 5, 1, 0, 0, 1, 6, 21, 54, 111, 186, 243, 186, 111, 54, 21, 6, 1, 0, 0, 1, 7, 28, 82, 193, 379, 622, 808, 622, 379, 193, 82, 28, 7, 1, 0, 0
OFFSET
0,11
COMMENTS
See A119369 for p=1 and A122445 for p=2. The diagonals may be generated by iterated convolutions of a base sequence B (A000108(n)) with the sequence C (A000957(n+1)) of central terms.
REFERENCES
Kim, Ki Hang; Rogers, Douglas G.; Roush, Fred W. Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577--594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013) - From N. J. A. Sloane, Jun 05 2012
FORMULA
Sum_{k=0..2*n} T(n,k) = A071724(n) = [n=0] + 3*binomial(2n,n-1)/(n+2) = [n=0] + n*C(n)/(n+2), where C(n) are the Catalan numbers (A000108). - G. C. Greubel, Mar 17 2021
EXAMPLE
Triangle begins :
1;
1, 0, 0;
1, 1, 1, 0, 0;
1, 2, 3, 2, 1, 0, 0;
1, 3, 6, 8, 6, 3, 1, 0, 0;
1, 4, 10, 18, 24, 18, 10, 4, 1, 0, 0,
1, 5, 15, 33, 57, 75, 57, 33, 15, 5, 1, 0, 0; ...
MAPLE
T:= proc(n, k) option remember;
if k=0 and n=0 then 1;
elif k<0 or k>2*(n-1) then 0;
elif n=2 and k<3 then 1;
elif k<n then T(n, 2*n-k-1) +T(n-1, k);
else T(n, 2*n-k-2);
fi; end:
seq(seq(T(n, k), k=0..2*n), n=0..12); # G. C. Greubel, Mar 17 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 && n==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, If[k<n, T[n, 2*n-k-1] +T[n-1, k], T[n, 2*n-k-2] ]]]];
Table[T[n, k], {n, 0, 10}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
PROG
(PARI) T(n, k)=if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, if(k<n, T(n-1, k)+T(n, 2*n-1-k), T(n, 2*n-2-k))))) \\ Paul D. Hanna, Nov 12 2009
(Sage)
@CachedFunction
def T(n, k):
if (k==0 and n==0): return 1
elif (k<0 or k>2*(n-1)): return 0
elif (n==2 and k<3): return 1
elif (k<n): return T(n, 2*n-k-1) +T(n-1, k)
else: return T(n, 2*n-k-2)
flatten([[T(n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021
KEYWORD
nonn,tabf
AUTHOR
Philippe Deléham, Nov 11 2009
STATUS
approved